Advertisement

Uniform nanoparticles building Ce1−x Pr x O2−δ mesoarchitectures: structure, morphology, surface chemistry, and catalytic performance

  • Simona Somacescu
  • Viorica Parvulescu
  • Jose Maria Calderon-Moreno
  • Soong-Hyuck Suh
  • Petre Osiceanu
  • Bao-Lian Su
Research Paper

Abstract

Ce1−x Pr x O2−δ (x = 0, 0.1, 0.5, 0.9) mesoarchitectures built from nanoparticles with crystalline framework have been synthesized by the self-assembly method assisted by surfactants and hydrothermal treatment. Cetyltrimethylammonium bromide (CTAB) was used as template, urea as hydrolyzing agent and tetraethylammonium hydroxide (TEAOH) as pH mediator to obtain pH 9. The inorganic precursors have been co-assembled with surfactant template to produce mesoarchitectures which have uniform pore size distribution, crystalline channel walls, high thermal stability, and high catalytic activity in the oxidation reaction of methane. The resulting powders, calcined at 550 °C, were characterized by X-ray diffraction (XRD), Raman spectroscopy, N2 adsorption/desorption isotherms (BET), thermogravimetric analysis (TG-DTG), scanning and transmission electron microscopy (SEM, TEM, and HRTEM), and X-ray photoelectron spectroscopy (XPS). The as-synthesized mesoporous nanoparticles are single-phase fluorite Ce1−x Pr x O2−δ solid solution without additional Ce- or Pr-based oxides, or secondary phases with different lattice symmetry or stoichiometry. A clear morphology of dispersed nanoparticles, with uniform grain size between 5 and 7 nm, and mean pore size around 5 nm, have been observed. The specific surface area of the as-synthesized mesoporous samples after calcination at 550 °C remains in the range 60–150 m2 g−1. All the spectroscopic methods clearly confirm the homogeneous incorporation of Pr into the CeO2 lattice of the nanocrystallites, to form a single-phase solid solution with fluorite structure, modifying the absorption spectra of the nanocrystallites. All the samples showed high catalytic activity in the oxidation reactions of methane.

Keywords

Ceria praseodymia Nanostructure Mesostructure Solid solution Hydrocarbons oxidation 

Notes

Acknowledgments

This article was carried out within the research program Surface Chemistry and Catalysis of the ‘‘Ilie Murgulescu’’ Institute of Physical Chemistry, financed by the Romanian Academy. Support of the EU (ERDF) and Romanian Government that allowed for acquisition of the research infrastructure under POS-CCE O 2.2.1 project INFRANANOCHEM-Nr. 19/01.03.2009, is gratefully acknowledged.

Supplementary material

11051_2012_885_MOESM1_ESM.doc (1.2 mb)
Supplementary material 1 (DOC 1252 kb)

References

  1. Alifanti M, Florea M, Somacescu S, Parvulescu V (2005) Supported perovskites for total oxidation of toluene. Appl Catal B 60(1–2):33–39. doi: 10.1016/j.apcatb.2005.02.018 Google Scholar
  2. Balaguer M, Solís S, Serra JM (2011) Study of the transport properties of the mixed ionic electronic conductor Ce1−xTbxO2−δ Co (x = 0.1, 0.2) and evaluation as oxygen-transport membrane. Chem Mater 23:2333–2343. doi: 10.1021/cm103581w CrossRefGoogle Scholar
  3. Barreca D, Gasparotto A, Maccato C, Maragno C, Tondello E, Comini E, Sberveglieri G (2007) Columnar CeO2 nanostructures for sensor application. Nanotechnology 18:125502. doi: 10.1021/cm103581w CrossRefGoogle Scholar
  4. Bondioli F, Corradi AB, Manfredini T, Leonelli C, Bertoncello R (2000) Nonconventional synthesis of praseodymium-doped ceria by flux method. Chem Mater 12(2):324–330. doi: 10.1021/cm990128j CrossRefGoogle Scholar
  5. Borchert H, Frolova YV, Kaichev VV, Prosvirin IP, Alikina GM, Lukashevich AI, Zaikovskii VI, Moroz EM, Trukhan SN, Ivanov VP (2005) Electronic and chemical properties of nanostructured cerium dioxide doped with praseodymium. J Phys Chem B 109(12):5728–5738. doi: 10.1021/jp045828c CrossRefGoogle Scholar
  6. Calderon Moreno JM, Pol VG, Suh SH, Popa M (2010) Autogenic synthesis of green-and red-emitting single-phase Pr2O2CO3 and PrO1. 833 luminescent nanopowders. Inorg Chem 49(21):10067–10073. doi: 10.1021/ic101414x CrossRefGoogle Scholar
  7. Calderon-Moreno J, Yoshimura M (2001) Effect of melt quenching on the subsolidus equilibria in the ternary system Al2O3–Y3Al5O12–ZrO2. Solid State Ion 141–142:343–349. doi: 10.1016/S0167-2738(01)00759-7 CrossRefGoogle Scholar
  8. Calderon-Moreno J, Yoshimura M (2002) Characterization by Raman spectroscopy of solid solutions in the yttria-rich side of the zirconia-yttria system. Solid State Ion 154:125–133. doi: 10.1016/S0167-2738(02)00473-3 CrossRefGoogle Scholar
  9. Corma A, Atienzar P, García H, Chane-Ching J (2004) Hierarchically mesostructured doped CeO2 with potential for solar-cell use. Nat Mater 3(6):394–397. doi: 10.1038/nmat1129 CrossRefGoogle Scholar
  10. Costa-Nunes O, Gorte RJ, Vohs JM (2005) Comparison of the performance of Cu–CeO2–YSZ and Ni–YSZ composite SOFC anodes with H2, CO, and syngas. J Power Sources 141(2):241–249. doi: 10.1016/j.jpowsour.2004.09.022 CrossRefGoogle Scholar
  11. Dilawar N, Mehrotra S, Varandani D, Kumaraswamy B, Haldar S, Bandyopadhyay A (2008) A Raman spectroscopic study of C-type rare earth sesquioxides. Mater Charact 59(4):462–467. doi: 10.1016/j.matchar.2007.04.008 CrossRefGoogle Scholar
  12. He H, Dai H, Au C (2004) Defective structure, oxygen mobility, oxygen storage capacity, and redox properties of RE-based (RE = Ce, Pr) solid solutions. Catal Today 90(3–4):245–254CrossRefGoogle Scholar
  13. Li D, Zhou H, Honma I (2003) Design and synthesis of self-ordered mesoporous nanocomposite through controlled in situ crystallization. Nat Mater 3(1):65–72. doi: 10.1038/nmat1043 CrossRefGoogle Scholar
  14. Li H, Lu G, Wang Y, Guo Y (2010) Synthesis of flower-like La or Pr-doped mesoporous ceria microspheres and their catalytic activities for methane combustion. Catal Commun 11(11):946–950. doi: 10.1016/j.catcom.2010.04.006 CrossRefGoogle Scholar
  15. Lütkehoff S, Neumann M, Ślebarski A (1995) 3d and 4d X-ray-photoelectron spectra of Pr under gradual oxidation. Phys Rev B 52(19):13808–13811. doi: 10.1103/PhysRevB.52.13808 CrossRefGoogle Scholar
  16. Malenfant PRL, Wan J, Taylor ST, Manoharan M (2007) Self-assembly of an organic-inorganic block copolymer for nano-ordered ceramics. Nat Nanotechnol 2(1):43–46. doi: 10.1038/nnano.2006.168 CrossRefGoogle Scholar
  17. NIST (2008) X-ray photoelectron spectroscopy database (version 4.0 ed). Physical Electronics USA Inc., GaithersburgGoogle Scholar
  18. Nugent L, Baybarz R, Burnett J, Ryan J (1973) Electron-transfer and fd absorption bands of some lanthanide and actinide complexes and the standard (II-III) oxidation potential for each member of the lanthanide and actinide series. J Phys Chem 77(12):1528–1539. doi: 10.1021/j100631a011 CrossRefGoogle Scholar
  19. Ogasawara H, Kotani A, Potze R, Sawatzky GA, Thole BT (1991) Praseodymium 3d- and 4d-core photoemission spectra of Pr2O3. Phys Rev B 44(11):5465–5469CrossRefGoogle Scholar
  20. Phillippi C, Mazdiyasni K (1971) Infrared and Raman spectra of zirconia polymorphs. J Am Ceram Soc 54(5):254–258. doi: 0.1111/j.1151-2916.1971.tb12283.x CrossRefGoogle Scholar
  21. Pourfayaz F, Khodadadi A, Mortazavi Y, Mohajerzadeh S (2005) CeO2 doped SnO2 sensor selective to ethanol in presence of CO, LPG and CH4. Sens Actuators B 108(1–2):172–176. doi: 10.1016/j.snb.2004.12.107 CrossRefGoogle Scholar
  22. Pu ZY, Lu JQ, Luo MF, Xie YL (2007) Study of oxygen vacancies in Ce0.9Pr0.1O2-δ solid solution by in Situ X-ray diffraction and in situ Raman spectroscopy. J Phys Chem C 111(50):18695–18702. doi: 10.1021/jp0759776 CrossRefGoogle Scholar
  23. Pu ZY, Liu XS, Jia AP, Xie YL, Lu JQ, Luo MF (2008) Enhanced activity for CO oxidation over Pr-and Cu-doped CeO2 catalysts: effect of oxygen vacancies. J Phys Chem C 112(38):15045–15051. doi: 10.1021/jp805389k CrossRefGoogle Scholar
  24. Reddy BM, Katta L, Thrimurthulu G (2010) Novel nanocrystalline Ce1−xLax O2−δ (x = 0.2) solid solutions: structural characteristics and catalytic performance. Chem Mater 22(2):467–475. doi: 10.1021/cm903282w CrossRefGoogle Scholar
  25. Rojas T, Ocana M (2002) Uniform nanoparticles of Pr(III)/ceria solid solutions prepared by homogeneous precipitation. Scr Mater 46(9):655–660. doi: 10.1016/S1359-6462(02)00047-7 CrossRefGoogle Scholar
  26. Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by powers & porous solids, principles, methodology and applications. Academic Press, BostonGoogle Scholar
  27. Santos S, De Andrade M, Sampaio J, da Luz A, Ogasawara T (2007) Synthesis of ceria-praseodymia pigments by citrate-gel method for dental restorations. Dyes Pigment 75(3):574–579. doi: 10.1016/j.dyepig.2006.07.005 CrossRefGoogle Scholar
  28. Sarma D, Rao C (1980) XPES studies of oxides of second-and third-row transition metals including rare earths. J Electron Spectrosc Relat Phenom 20(1):25–45. doi: 10.1016/0368-2048(80)85003-1 CrossRefGoogle Scholar
  29. Serra JM, Buchkremer HP (2007) On the nanostructuring and catalytic promotion of intermediate temperature solid oxide fuel cell (IT-SOFC) cathodes. J Power Sources 172(2):768–774. doi: 10.1016/j.jpowsour.2007.05.018 CrossRefGoogle Scholar
  30. Somacescu S, Moreno JMC, Osiceanu P, Su BL, Parvulescu V (2010) Single-phase solid solution (TiO2)x-(YSZ) 1−x mesoporous nanoparticles with catalytic activity in the oxidation of methane. J Phys Chem C 114(45):723–730. doi: 10.1021/jp105834a CrossRefGoogle Scholar
  31. Somacescu S, Parvulescu V, Osiceanu P, Caldeon-Moreno JM, Su B-L (2011) Structure and surface chemistry in crystalline mesoporous(CeO2-[δ])-YSZ. J Colloid Interface Sci 363:165–174. doi: 0.1016/j.jcis.2011.06.051 CrossRefGoogle Scholar
  32. Steele B (2000) Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500°C. Solid State Ion 129(1–4):95–110. doi: 10.1016/S0167-2738(99)00319-7 CrossRefGoogle Scholar
  33. Sulcova P (1998) Synthesis of Ce1−xPrxO2 pigments with other lanthanides. Dyes Pigment 40:87–91. doi: 10.1016/S0143-7208(98)00035-7 CrossRefGoogle Scholar
  34. Sulcova P, Trojan M (2003) The synthesis and analysis of Ce0.95−yPr0.05SmyO2-y/2 pigments. Dyes Pigment 58(1):59–63. doi: 10.1016/S0143-7208(03)00024-X CrossRefGoogle Scholar
  35. Takasu Y, Sugino T, Matsuda Y (1984) Electrical conductivity of praseodymia doped ceria. J Appl Electrochem 14(1):79–81. doi: 10.1007/BF00611261 CrossRefGoogle Scholar
  36. Tok A, Du S, Boey F, Chong W (2007) Hydrothermal synthesis and characterization of rare earth doped ceria nanoparticles. Mater Sci Eng A 466(1):223–229. doi: org/10.1016/j.msea.2007.02.083 CrossRefGoogle Scholar
  37. White W, Keramidas V (1972) Vibrational spectra of oxides with the C-type rare earth oxide structure. Spectrochim Acta A 28(3):501–509. doi: 10.1016/0584-8539(72)80237-X CrossRefGoogle Scholar
  38. Xie GQ, Luo MF, He M, Fang P, Ma JM, Ying YF, Yan ZL (2007) An improved method for preparation of Ce0.8Pr0.2Oy solid solutions with nanoparticles smaller than 10 nm. J Nanopart Res 9(3):471–478. doi: 10.1007/s11051-005-9052-7 CrossRefGoogle Scholar
  39. Zhang C, Grass ME, McDaniel AH, DeCaluwe SC, El Gabaly F, Liu Z, McCarty KF, Farrow RL, Linne MA, Hussain Z (2010) Measuring fundamental properties in operating solid oxide electrochemical cells by using in situ X-ray photoelectron spectroscopy. Nat Mater 9(11):944–949. doi: 10.1038/nmat2851 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Simona Somacescu
    • 1
  • Viorica Parvulescu
    • 1
  • Jose Maria Calderon-Moreno
    • 1
  • Soong-Hyuck Suh
    • 2
  • Petre Osiceanu
    • 1
  • Bao-Lian Su
    • 3
    • 4
  1. 1.Laboratory of Surface Chemistry and Catalysis“Ilie Murgulescu” Institute of Physical Chemistry, Romanian AcademyBucharestRomania
  2. 2.Department of Chemical EngineeringKeimyung UniversityDaeguKorea
  3. 3.Laboratory of Inorganic Materials Chemistry (CMI)University of Namur (FUNDP)NamurBelgium
  4. 4.Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhanChina

Personalised recommendations