Advertisement

Self-assembled nanoparticles of p-phenylenediacetonitrile derivatives with fluorescence turn-on

  • Karolis Kazlauskas
  • Arūnas Miasojedovas
  • Darius Dobrovolskas
  • Eglė Arbačiauskienė
  • Vytautas Getautis
  • Algirdas Šačkus
  • Saulius Juršėnas
Research Paper

Abstract

Absence of emission concentration quenching accompanied by high emission efficiency in a solid state is highly challenging though very attractive, for example, for fabrication of solid state light emitters or fluorescent organic nanoparticles (FONs). Here, formation of FONs based on novel p-phenylenediacetonitrile derivatives by re-precipitation method in aqueous solutions is demonstrated. The exceptionality of the derivatives employed is manifested by nitrile groups-induced steric hindrance effects inhibiting concentration quenching of emission. Consisting of different size and polarity end-groups, phenyl groups in one compound and hexyl-carbazolyl in another, the derivatives were examined and compared in regard to nanoparticle formation morphology, size tunability, spectral signatures, and fluorescence turn-on efficiency. The variation of solvent/non-solvent ratio allowed to achieve tuning of the FON sizes from 55 nm up to 360 nm and resulted in maximal fluorescence on/off ratio of 38. Spectrally resolved confocal fluorescence microscopy revealed somewhat different molecule arrangement in different FONs suggesting dominant amorphous-like phase, which was confirmed by small angle X-ray scattering measurements. The FONs were verified to be stable against degradation or conglomeration into larger clusters at least over a couple of months thus implying their feasibility for practical applications. Finally, potential application of the fluorescent p-phenylenediacetonitrile nanoparticles for organic vapor sensing via fluorescence on/off switching was demonstrated.

Keywords

Fluorescent organic nanoparticles Steric hindrance Fluorescence turn-on Sensing 

Notes

Acknowledgments

The research was funded by a grant (No. MIP-073/2011) from the Research Council of Lithuania. Dr. A. Gruodis is acknowledged for performing DFT calculations. Dr. A. Kadys is acknowledged for help in FE-SEM measurements. Dr. R. Juškėnas is thanked for performing SAXS measurements.

References

  1. An BK, Kwon SK, Jung SD, Park SY (2002) Enhanced emission and its switching in fluorescent organic nanoparticles. J Am Chem Soc 124:14410–14415. doi: 10.1021/ja0269082 CrossRefGoogle Scholar
  2. An B-K, Kwon S-K, Park SY (2007) Photopatterned arrays of fluorescent organic nanoparticles. Angew Chem 119:2024–2028. doi: 10.1002/ange.200604209 CrossRefGoogle Scholar
  3. Arbačiauskienė E, Kazlauskas K, Miasojedovas A et al (2010a) Multifunctional polyconjugated molecules with carbazolyl and pyrazolyl moieties for optoelectronic applications. Synth Met 160:490–498. doi: 10.1016/j.synthmet.2009.11.038 CrossRefGoogle Scholar
  4. Arbačiauskienė E, Kazlauskas K, Miasojedovas A et al (2010b) Pyrazolyl-substituted polyconjugated molecules for optoelectronic applications. Dyes Pigment 85:79–85. doi: 10.1016/j.dyepig.2009.10.007 CrossRefGoogle Scholar
  5. Asahi T, Sugiyama T, Masuhara H (2008) Laser fabrication and spectroscopy of organic nanoparticles. Acc Chem Res 41:1790–1798. doi: 10.1021/ar800125s CrossRefGoogle Scholar
  6. Bhongale CJ, Chang C-W, Lee C-S et al (2005) Relaxation dynamics and structural characterization of organic nanoparticles with enhanced emission. J Phys Chem B 109:13472–13482. doi: 10.1021/jp0502297 CrossRefGoogle Scholar
  7. Chan CP, Bruemmel Y, Seydack M et al (2004) Nanocrystal biolabels with releasable fluorophores for immunoassays. Anal Chem 76:3638–3645. doi: 10.1021/ac0353740 CrossRefGoogle Scholar
  8. de Mello JC, Wittmann HF, Friend RH (1997) An improved experimental determination of external photoluminescence quantum efficiency. Adv Mater 9:230–232. doi: 10.1002/adma.19970090308 CrossRefGoogle Scholar
  9. Frisch MJ, Trucks GW, Schlegel HB, et al (2004) Gaussian 03, revision D. 01. Gaussian Inc.: Wallingford, CTGoogle Scholar
  10. Gao H, Poulsen DA, Ma B et al (2010) Site isolation of emitters within cross-linked polymer nanoparticles for white electroluminescence. Nano Lett 10:1440–1444. doi: 10.1021/nl100347p CrossRefGoogle Scholar
  11. Han M, Hara M (2005) Intense fluorescence from light-driven self-assembled aggregates of nonionic azobenzene derivative. J Am Chem Soc 127:10951–10955. doi: 10.1021/ja0509275 CrossRefGoogle Scholar
  12. Herbst W, Hunger K (2004) Industrial organic pigments: production, properties, applications, 3rd edn. Wiley, WeinheimCrossRefGoogle Scholar
  13. Hong Y, Lam JWY, Tang BZ (2011) Aggregation-induced emission. Chem Soc Rev 40:5361–5388. doi: 10.1039/c1cs15113d CrossRefGoogle Scholar
  14. Horn D, Rieger J (2001) Organic nanoparticles in the aqueous phase: theory, experiment, and use. Angew Chem Int Ed 40:4330–4361. doi: 10.1002/1521-3773(20011203)40 CrossRefGoogle Scholar
  15. Itami K, Ohashi Y, Yoshida J-ichi (2005) Triarylethene-based extended π-systems: programmable synthesis and photophysical properties. J Org Chem 70:2778–2792. doi: 10.1021/jo0477401 Google Scholar
  16. Jang J, Ha J, Cho J (2007) Fabrication of water-dispersible polyaniline-poly(4-styrenesulfonate) nanoparticles for inkjet-printed chemical-sensor applications. Adv Mater 19:1772–1775. doi: 10.1002/adma.200602127 CrossRefGoogle Scholar
  17. Kietzke T, Neher D, Landfester K et al (2003) Novel approaches to polymer blends based on polymer nanoparticles. Nat Mater 2:408–412. doi: 10.1038/nmat889 CrossRefGoogle Scholar
  18. Kim HY, Bjorklund TG, Lim S-H, Bardeen CJ (2003) Spectroscopic and photocatalytic properties of organic tetracene nanoparticles in aqueous solution. Langmuir 19:3941–3946. doi: 10.1021/la026851x CrossRefGoogle Scholar
  19. Liu H, Xu J, Li Y, Li Y (2010) Aggregate nanostructures of organic molecular materials. Acc Chem Res 43:1496–1508. doi: 10.1021/ar100084y CrossRefGoogle Scholar
  20. Luo J, Xie Z, Lam JW et al (2001) Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun 2001:1740–1741. doi: 10.1039/b105159h CrossRefGoogle Scholar
  21. Macchioni A, Ciancaleoni G, Zuccaccia C, Zuccaccia D (2008) Determining accurate molecular sizes in solution through NMR diffusion spectroscopy. Chem Soc Rev 37:479–489. doi: 10.1039/b615067p CrossRefGoogle Scholar
  22. Oelkrug D, Tompert A, Egelhaaf H et al (1996) Towards highly luminescent phenylene vinylene films. Synth Met 83:231–237. doi: 10.1016/S0379-6779(96)04484-0 CrossRefGoogle Scholar
  23. Oelkrug D, Tompert A, Gierschner J et al (1998) Tuning of fluorescence in films and nanoparticles of oligophenylenevinylenes. J Phys Chem B 102:1902–1907. doi: 10.1021/jp973225d CrossRefGoogle Scholar
  24. Ong BS, Wu Y, Liu P, Gardner S (2005) Structurally ordered polythiophene nanoparticles for high-performance organic thin-film transistors. Adv Mater 17:1141–1144. doi: 10.1002/adma.200401660 CrossRefGoogle Scholar
  25. Palayangoda SS, Cai X, Adhikari RM, Neckers DC (2008) Carbazole-based donor–acceptor compounds: highly fluorescent organic nanoparticles. Org Lett 10:281–284. doi: 10.1021/ol702666g CrossRefGoogle Scholar
  26. Piok T, Gamerith S, Gadermaier C et al (2003) Organic light-emitting devices fabricated from semiconducting nanospheres. Adv Mater 15:800–804. doi: 10.1002/adma.200304253 CrossRefGoogle Scholar
  27. Ren Y, Dong Y, Lam JWY et al (2005) Studies on the aggregation-induced emission of silole film and crystal by time-resolved fluorescence technique. Chem Phys Lett 402:468–473. doi: 10.1016/j.cplett.2004.12.103 CrossRefGoogle Scholar
  28. Toal SJ, Jones KA, Magde D, Trogler WC (2005) Luminescent silole nanoparticles as chemoselective sensors for Cr(VI). J Am Chem Soc 127:11661–11665. doi: 10.1021/ja052582w CrossRefGoogle Scholar
  29. Tong H, Hong Y, Dong Y et al (2006) Fluorescent “light-up” bioprobes based on tetraphenylethylene derivatives with aggregation-induced emission characteristics. Chem Commun 35:3705–37077. doi: 10.1039/b608425g CrossRefGoogle Scholar
  30. Tong H, Dong Y, Hong Y et al (2007) Aggregation-induced emission: effects of molecular structure, solid-state conformation, and morphological packing arrangement on light-emitting behaviors of diphenyldibenzofulvene derivatives. J Phys Chem C 111:2287–2294. doi: 10.1021/jp0630828 CrossRefGoogle Scholar
  31. Vijayakumar C, Sugiyasu K, Takeuchi M (2011) Oligofluorene-based electrophoretic nanoparticles in aqueous medium as a donor scaffold for fluorescence resonance energy transfer and white-light emission. Chem Sci 2:291–294. doi: 10.1039/C0SC00343C CrossRefGoogle Scholar
  32. Wang L, Dong L, Bian G-R et al (2005a) Using organic nanoparticle fluorescence to determine nitrite in water. Anal Bioanal Chem 382:1300–1303. doi: 10.1007/s00216-005-3250-0 CrossRefGoogle Scholar
  33. Wang T-T, Chung S-M, Wu F-I et al (2005b) Relaxation dynamics of 2,7- and 3,6-distyrylcarbazoles in solutions and in solid films: mechanism for efficient nonradiative deactivation in the 3,6-linked carbazole. J Phys Chem B 109:23827–23835. doi: 10.1021/jp053940k CrossRefGoogle Scholar
  34. Xiao D, Xi L, Yang W et al (2003) Size-tunable emission from 1,3-diphenyl-5-(2-anthryl)-2-pyrazoline nanoparticles. J Am Chem Soc 125:6740–6745. doi: 10.1021/ja028674s CrossRefGoogle Scholar
  35. Zheng C, Xu X, He F et al (2010) Preparation of high-quality organic semiconductor nanoparticle films by solvent-evaporation-induced self-assembly. Langmuir 26:16730–16736. doi: 10.1021/la103449q CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Karolis Kazlauskas
    • 1
  • Arūnas Miasojedovas
    • 1
  • Darius Dobrovolskas
    • 1
  • Eglė Arbačiauskienė
    • 2
  • Vytautas Getautis
    • 2
  • Algirdas Šačkus
    • 2
  • Saulius Juršėnas
    • 1
  1. 1.Institute of Applied ResearchVilnius UniversityVilniusLithuania
  2. 2.Department of Organic ChemistryKaunas University of TechnologyKaunasLithuania

Personalised recommendations