Self-assembled nanoparticles of p-phenylenediacetonitrile derivatives with fluorescence turn-on

  • Karolis Kazlauskas
  • Arūnas Miasojedovas
  • Darius Dobrovolskas
  • Eglė Arbačiauskienė
  • Vytautas Getautis
  • Algirdas Šačkus
  • Saulius Juršėnas
Research Paper


Absence of emission concentration quenching accompanied by high emission efficiency in a solid state is highly challenging though very attractive, for example, for fabrication of solid state light emitters or fluorescent organic nanoparticles (FONs). Here, formation of FONs based on novel p-phenylenediacetonitrile derivatives by re-precipitation method in aqueous solutions is demonstrated. The exceptionality of the derivatives employed is manifested by nitrile groups-induced steric hindrance effects inhibiting concentration quenching of emission. Consisting of different size and polarity end-groups, phenyl groups in one compound and hexyl-carbazolyl in another, the derivatives were examined and compared in regard to nanoparticle formation morphology, size tunability, spectral signatures, and fluorescence turn-on efficiency. The variation of solvent/non-solvent ratio allowed to achieve tuning of the FON sizes from 55 nm up to 360 nm and resulted in maximal fluorescence on/off ratio of 38. Spectrally resolved confocal fluorescence microscopy revealed somewhat different molecule arrangement in different FONs suggesting dominant amorphous-like phase, which was confirmed by small angle X-ray scattering measurements. The FONs were verified to be stable against degradation or conglomeration into larger clusters at least over a couple of months thus implying their feasibility for practical applications. Finally, potential application of the fluorescent p-phenylenediacetonitrile nanoparticles for organic vapor sensing via fluorescence on/off switching was demonstrated.


Fluorescent organic nanoparticles Steric hindrance Fluorescence turn-on Sensing 



The research was funded by a grant (No. MIP-073/2011) from the Research Council of Lithuania. Dr. A. Gruodis is acknowledged for performing DFT calculations. Dr. A. Kadys is acknowledged for help in FE-SEM measurements. Dr. R. Juškėnas is thanked for performing SAXS measurements.


  1. An BK, Kwon SK, Jung SD, Park SY (2002) Enhanced emission and its switching in fluorescent organic nanoparticles. J Am Chem Soc 124:14410–14415. doi: 10.1021/ja0269082 CrossRefGoogle Scholar
  2. An B-K, Kwon S-K, Park SY (2007) Photopatterned arrays of fluorescent organic nanoparticles. Angew Chem 119:2024–2028. doi: 10.1002/ange.200604209 CrossRefGoogle Scholar
  3. Arbačiauskienė E, Kazlauskas K, Miasojedovas A et al (2010a) Multifunctional polyconjugated molecules with carbazolyl and pyrazolyl moieties for optoelectronic applications. Synth Met 160:490–498. doi: 10.1016/j.synthmet.2009.11.038 CrossRefGoogle Scholar
  4. Arbačiauskienė E, Kazlauskas K, Miasojedovas A et al (2010b) Pyrazolyl-substituted polyconjugated molecules for optoelectronic applications. Dyes Pigment 85:79–85. doi: 10.1016/j.dyepig.2009.10.007 CrossRefGoogle Scholar
  5. Asahi T, Sugiyama T, Masuhara H (2008) Laser fabrication and spectroscopy of organic nanoparticles. Acc Chem Res 41:1790–1798. doi: 10.1021/ar800125s CrossRefGoogle Scholar
  6. Bhongale CJ, Chang C-W, Lee C-S et al (2005) Relaxation dynamics and structural characterization of organic nanoparticles with enhanced emission. J Phys Chem B 109:13472–13482. doi: 10.1021/jp0502297 CrossRefGoogle Scholar
  7. Chan CP, Bruemmel Y, Seydack M et al (2004) Nanocrystal biolabels with releasable fluorophores for immunoassays. Anal Chem 76:3638–3645. doi: 10.1021/ac0353740 CrossRefGoogle Scholar
  8. de Mello JC, Wittmann HF, Friend RH (1997) An improved experimental determination of external photoluminescence quantum efficiency. Adv Mater 9:230–232. doi: 10.1002/adma.19970090308 CrossRefGoogle Scholar
  9. Frisch MJ, Trucks GW, Schlegel HB, et al (2004) Gaussian 03, revision D. 01. Gaussian Inc.: Wallingford, CTGoogle Scholar
  10. Gao H, Poulsen DA, Ma B et al (2010) Site isolation of emitters within cross-linked polymer nanoparticles for white electroluminescence. Nano Lett 10:1440–1444. doi: 10.1021/nl100347p CrossRefGoogle Scholar
  11. Han M, Hara M (2005) Intense fluorescence from light-driven self-assembled aggregates of nonionic azobenzene derivative. J Am Chem Soc 127:10951–10955. doi: 10.1021/ja0509275 CrossRefGoogle Scholar
  12. Herbst W, Hunger K (2004) Industrial organic pigments: production, properties, applications, 3rd edn. Wiley, WeinheimCrossRefGoogle Scholar
  13. Hong Y, Lam JWY, Tang BZ (2011) Aggregation-induced emission. Chem Soc Rev 40:5361–5388. doi: 10.1039/c1cs15113d CrossRefGoogle Scholar
  14. Horn D, Rieger J (2001) Organic nanoparticles in the aqueous phase: theory, experiment, and use. Angew Chem Int Ed 40:4330–4361. doi: 10.1002/1521-3773(20011203)40 CrossRefGoogle Scholar
  15. Itami K, Ohashi Y, Yoshida J-ichi (2005) Triarylethene-based extended π-systems: programmable synthesis and photophysical properties. J Org Chem 70:2778–2792. doi: 10.1021/jo0477401 Google Scholar
  16. Jang J, Ha J, Cho J (2007) Fabrication of water-dispersible polyaniline-poly(4-styrenesulfonate) nanoparticles for inkjet-printed chemical-sensor applications. Adv Mater 19:1772–1775. doi: 10.1002/adma.200602127 CrossRefGoogle Scholar
  17. Kietzke T, Neher D, Landfester K et al (2003) Novel approaches to polymer blends based on polymer nanoparticles. Nat Mater 2:408–412. doi: 10.1038/nmat889 CrossRefGoogle Scholar
  18. Kim HY, Bjorklund TG, Lim S-H, Bardeen CJ (2003) Spectroscopic and photocatalytic properties of organic tetracene nanoparticles in aqueous solution. Langmuir 19:3941–3946. doi: 10.1021/la026851x CrossRefGoogle Scholar
  19. Liu H, Xu J, Li Y, Li Y (2010) Aggregate nanostructures of organic molecular materials. Acc Chem Res 43:1496–1508. doi: 10.1021/ar100084y CrossRefGoogle Scholar
  20. Luo J, Xie Z, Lam JW et al (2001) Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun 2001:1740–1741. doi: 10.1039/b105159h CrossRefGoogle Scholar
  21. Macchioni A, Ciancaleoni G, Zuccaccia C, Zuccaccia D (2008) Determining accurate molecular sizes in solution through NMR diffusion spectroscopy. Chem Soc Rev 37:479–489. doi: 10.1039/b615067p CrossRefGoogle Scholar
  22. Oelkrug D, Tompert A, Egelhaaf H et al (1996) Towards highly luminescent phenylene vinylene films. Synth Met 83:231–237. doi: 10.1016/S0379-6779(96)04484-0 CrossRefGoogle Scholar
  23. Oelkrug D, Tompert A, Gierschner J et al (1998) Tuning of fluorescence in films and nanoparticles of oligophenylenevinylenes. J Phys Chem B 102:1902–1907. doi: 10.1021/jp973225d CrossRefGoogle Scholar
  24. Ong BS, Wu Y, Liu P, Gardner S (2005) Structurally ordered polythiophene nanoparticles for high-performance organic thin-film transistors. Adv Mater 17:1141–1144. doi: 10.1002/adma.200401660 CrossRefGoogle Scholar
  25. Palayangoda SS, Cai X, Adhikari RM, Neckers DC (2008) Carbazole-based donor–acceptor compounds: highly fluorescent organic nanoparticles. Org Lett 10:281–284. doi: 10.1021/ol702666g CrossRefGoogle Scholar
  26. Piok T, Gamerith S, Gadermaier C et al (2003) Organic light-emitting devices fabricated from semiconducting nanospheres. Adv Mater 15:800–804. doi: 10.1002/adma.200304253 CrossRefGoogle Scholar
  27. Ren Y, Dong Y, Lam JWY et al (2005) Studies on the aggregation-induced emission of silole film and crystal by time-resolved fluorescence technique. Chem Phys Lett 402:468–473. doi: 10.1016/j.cplett.2004.12.103 CrossRefGoogle Scholar
  28. Toal SJ, Jones KA, Magde D, Trogler WC (2005) Luminescent silole nanoparticles as chemoselective sensors for Cr(VI). J Am Chem Soc 127:11661–11665. doi: 10.1021/ja052582w CrossRefGoogle Scholar
  29. Tong H, Hong Y, Dong Y et al (2006) Fluorescent “light-up” bioprobes based on tetraphenylethylene derivatives with aggregation-induced emission characteristics. Chem Commun 35:3705–37077. doi: 10.1039/b608425g CrossRefGoogle Scholar
  30. Tong H, Dong Y, Hong Y et al (2007) Aggregation-induced emission: effects of molecular structure, solid-state conformation, and morphological packing arrangement on light-emitting behaviors of diphenyldibenzofulvene derivatives. J Phys Chem C 111:2287–2294. doi: 10.1021/jp0630828 CrossRefGoogle Scholar
  31. Vijayakumar C, Sugiyasu K, Takeuchi M (2011) Oligofluorene-based electrophoretic nanoparticles in aqueous medium as a donor scaffold for fluorescence resonance energy transfer and white-light emission. Chem Sci 2:291–294. doi: 10.1039/C0SC00343C CrossRefGoogle Scholar
  32. Wang L, Dong L, Bian G-R et al (2005a) Using organic nanoparticle fluorescence to determine nitrite in water. Anal Bioanal Chem 382:1300–1303. doi: 10.1007/s00216-005-3250-0 CrossRefGoogle Scholar
  33. Wang T-T, Chung S-M, Wu F-I et al (2005b) Relaxation dynamics of 2,7- and 3,6-distyrylcarbazoles in solutions and in solid films: mechanism for efficient nonradiative deactivation in the 3,6-linked carbazole. J Phys Chem B 109:23827–23835. doi: 10.1021/jp053940k CrossRefGoogle Scholar
  34. Xiao D, Xi L, Yang W et al (2003) Size-tunable emission from 1,3-diphenyl-5-(2-anthryl)-2-pyrazoline nanoparticles. J Am Chem Soc 125:6740–6745. doi: 10.1021/ja028674s CrossRefGoogle Scholar
  35. Zheng C, Xu X, He F et al (2010) Preparation of high-quality organic semiconductor nanoparticle films by solvent-evaporation-induced self-assembly. Langmuir 26:16730–16736. doi: 10.1021/la103449q CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Karolis Kazlauskas
    • 1
  • Arūnas Miasojedovas
    • 1
  • Darius Dobrovolskas
    • 1
  • Eglė Arbačiauskienė
    • 2
  • Vytautas Getautis
    • 2
  • Algirdas Šačkus
    • 2
  • Saulius Juršėnas
    • 1
  1. 1.Institute of Applied ResearchVilnius UniversityVilniusLithuania
  2. 2.Department of Organic ChemistryKaunas University of TechnologyKaunasLithuania

Personalised recommendations