Advertisement

A quantitative modeling of the contributions of localized surface plasmon resonance and interband transitions to absorbance of gold nanoparticles

  • S. Zhu
  • T. P. Chen
  • Y. C. Liu
  • Y. Liu
  • S. Fung
Research Paper

Abstract

A quantitative modeling of the contributions of localized surface plasmon resonance (LSPR) and interband transitions to absorbance of gold nanoparticles has been achieved based on Lorentz–Drude dispersion function and Maxwell-Garnett effective medium approximation. The contributions are well modeled with three Lorentz oscillators. Influence of the structural properties of the gold nanoparticles on the LSPR and interband transitions has been examined. In addition, the dielectric function of the gold nanoparticles has been extracted from the modeling to absorbance, and it is found to be consistent with the result yielded from the spectroscopic ellipsometric analysis.

Keywords

Localized surface plasmon resonance Interband transitions Lorentz–Drude model Dielectric function Gold nanoparticles Modeling and simulation 

Notes

Acknowledgments

This study has been financially supported by National Research Foundation of Singapore (NRF-G-CRP 2007-01). Y. Liu acknowledges NSFC under project No. 60806040, and the Grant under project No. 2008ZC80.

References

  1. Balamurugan B, Maruyama Y (2005) Evidence of an enhanced interband absorption in Au nanoparticles: size-dependent electronic structure and optical properties. Appl Phys Lett 87:143105CrossRefGoogle Scholar
  2. De Vries AJ, Kooij ES, Wormeester H, Mewe AA, Poelsema B (2007) Ellipsometric study of percolation in electroless deposited silver films. J Appl Phys 101:053703CrossRefGoogle Scholar
  3. Feldheim DL, Foss CA (2002) Metal nanoparticles: synthesis, characterization, and applications. Marcel Dekker, New YorkGoogle Scholar
  4. Halas NJ (2010) Plasmonics: an emerging field fostered by nano letters. Nano Lett 10:3816–3822CrossRefGoogle Scholar
  5. Hughes HK (1963) Beer law and the optimum transmittance in absorption measurements. Appl Opt 2:937–945Google Scholar
  6. Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16:1685–1706CrossRefGoogle Scholar
  7. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677CrossRefGoogle Scholar
  8. Kooij ES, Poelsema B (2006) Shape and size effects in the optical properties of metallic nanorods. Phys Chem Chem Phys 8:3349–3357CrossRefGoogle Scholar
  9. Kuczynski GC (1980) Sintering processes. Plenum Press, New YorkGoogle Scholar
  10. Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410–8426CrossRefGoogle Scholar
  11. Link S, El-Sayed MA (2003) Optical properties and ultrafast dynamics of metallic nanocrystals. Ann Rev Phys Chem 54:331–366CrossRefGoogle Scholar
  12. Liu Z, Lee C, Narayanan V, Pei G, Kan EC (2002) Metal nanocrystal memories—Part I: device design and fabrication. IEEE Trans Electron Device 49:1606–1613CrossRefGoogle Scholar
  13. Losurdo M, Giangregorio MM, Bianco GV, Suvorova AA, Kong Rubanov CS, Capezzuto P, Humlicek J, Bruno G (2010) Size dependence of the dielectric function of silicon-supported plasmonic gold nanoparticles. Phys Rev B 82:155451CrossRefGoogle Scholar
  14. Maier SA, Atwater HA (2005) Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J Appl Phys 98:011101CrossRefGoogle Scholar
  15. Maxwell-Garnett JC (1906) Colours in metal glasses, in metallic films, and in metallic solutions II. Philos R Soc Lond 205:237–288CrossRefGoogle Scholar
  16. Noguez C (2005) Optical properties of isolated and supported metal nanoparticles. Opt Mater 27:1204–1211CrossRefGoogle Scholar
  17. Rao CNR, Kulkarni GU, Thomas PJ, Edwards PP (2002) Size-dependent chemistry: properties of nanocrystals. Chem A Eur J 8:29–35CrossRefGoogle Scholar
  18. Schaaff TG, Shafigullin MN, Khoury JT, Vezmar I, Whetten RL, Cullen WG, First PN, Wing CG, Ascensio J, JoseYacaman MJ (1997) Isolation of smaller nanocrystal au molecules: Robust quantum effects in optical spectra. J Phys Chem B 101:7885–7891CrossRefGoogle Scholar
  19. Vollmer M, Kreibig U (1995) Optical properties of metal clusters. Springer, BerlinGoogle Scholar
  20. Voorhees PW (1985) The theory of Ostwald ripening. J Status Phys 38:231–252CrossRefGoogle Scholar
  21. Zhu S, Chen TP, Liu YC, Yu SF, Liu Y (2010a) Tunable surface plasmon resonance of gold nanoparticles self-assembled on fused silica substrate. Electrochem Solid State Lett 13:K96–K99CrossRefGoogle Scholar
  22. Zhu S, Chen TP, Cen ZH, Goh ESM, Yu SF, Liu YC, Liu Y (2010b) Split of surface plasmon resonance of gold nanoparticles on silicon substrate: a study of dielectric functions. Opt Express 18:21926–21931CrossRefGoogle Scholar
  23. Zhu S, Chen TP, Liu YC, Yu SF, Liu Y (2010c) Collective excitations and dielectric function of self-assembled gold nanoparticles on a silicon substrate. Electrochem Solid State Lett 13:K39–K42CrossRefGoogle Scholar
  24. Zhu S, Chen TP, Liu Z, Liu YC, Liu Y, Yu SF (2011) Optical properties of gold nanoparticles on heavily-doped Si substrate synthesized with an electrochemical process. J Electrochem Soc 158:K152–K155CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • S. Zhu
    • 1
  • T. P. Chen
    • 1
  • Y. C. Liu
    • 2
  • Y. Liu
    • 3
  • S. Fung
    • 4
  1. 1.School of Electrical and Electronics EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.Singapore Institute of Manufacturing TechnologySingaporeSingapore
  3. 3.State Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China
  4. 4.Department of PhysicsThe University of Hong KongHong KongHong Kong

Personalised recommendations