Preventing the CO poisoning on Pt nanocatalyst using appropriate substrate: a first-principles study

Research Paper


Adsorption energies and stable configurations of CO on the Pt clusters are investigated using the first-principles density-functional theory method. It is found that the adsorption of CO on the top site of the Pt4 cluster is more stable than that on the bridge site. The atomic charges are unevenly distributed within the charged Pt4 cluster, and the structural positions of the Pt atoms determine their charge states and therefore their activity. A systematic study on the effects of electrons and holes doping in the Pt4 clusters suggest an effective method to prevent the CO poisoning through regulating the total charge in Pt4 clusters. The graphene-based substrate is an ideal catalyst support, which makes the Pt catalyst lose electron and weakens the CO adsorption. The results would be of great importance for designing high active nanoscale Pt catalysts used for fuel cells.


The first-principles Pt cluster Graphene-based substrates The CO adsorption Nanoscale theory Modeling and simulation 



This study was supported by the National Natural Science Foundation of China (Grant No. 11174070) and Innovation Scientists and Technicians Troop Construction Projects of Henan Province, China (Grant No. 104200510014).


  1. Allen RG, Lim C, Yang LX, Scott K, Roy S (2005) Novel anode structure for the direct methanol fuel cell. J Power Sources 143:142–149CrossRefGoogle Scholar
  2. Bell AT (2003) The impact of nanoscience on heterogeneous catalysis. Science 299:1688–1691CrossRefGoogle Scholar
  3. Blake P, Brimicombe PD, Nair RR, Booth TJ, Jiang D, Schedin F, Ponomarenko LA, Morozov SV, Gleeson HF, Hill EW, Geim AK, Novoselov KS (2008) Graphene-based liquid crystal device. Nano Lett 8:1704–1708CrossRefGoogle Scholar
  4. Dai XQ, Tang YN, Zhao JH, Dai YW (2010) Absorption of Pt clusters and the induced magnetic properties of graphene. J Phys Condens Matter 22:316005CrossRefGoogle Scholar
  5. Dai XQ, Tang YN, Dai YW, Li YH, Zhao JH, Zhao B, Yang ZX (2011) Structures of Pt clusters on graphene doped with nitrogen, boron, and silicon: a theoretical study. Chin Phys B 20:056801CrossRefGoogle Scholar
  6. Feibelman PJ, Hammer B, Nørskov JK, Wagner F, Scheffler M, Stumpf R, Watwe R, Dumesic J (2001) The CO/Pt(111) puzzle. J Phys Chem B 105:4018–4025CrossRefGoogle Scholar
  7. Futschek T, Hafner J, Marsman M (2006) Stable structural and magnetic isomers of small transition-metal clusters from the Ni group: an ab initio density-functional study. J Phys Condens Matter 18:9703–9748CrossRefGoogle Scholar
  8. Gajdoš M, Eichler A, Hafner J (2004) CO adsorption on close-packed transition and noble metal surfaces: trends from ab initio calculations. J Phys Condens Matter 16:1141CrossRefGoogle Scholar
  9. Gauthier Y, Schmid M, Padovani S, Lundgren E, Buš V, Kresse G, Redinger J, Varga P (2001) Adsorption sites and ligand effect for CO on an alloy surface: a direct view. Phys Rev Lett 87:36103CrossRefGoogle Scholar
  10. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRefGoogle Scholar
  11. Hammer B, Nørskov JK (2000) Theoretical surface science and catalysis-calculations and concepts. Adv Catal 45:71–129CrossRefGoogle Scholar
  12. Heiz U, Sanchez A, Abbet S, Schneider WD (1999) Catalytic oxidation of carbon monoxide on monodispersed platinum clusters: each atom counts. J Am Chem Soc 121:3214–3217CrossRefGoogle Scholar
  13. Henkelman G, Arnaldsson A, Jónsson H (2006) A fast and robust algorithm for Bader decomposition of charge density. Comput Mater Sci 36:354–360CrossRefGoogle Scholar
  14. Jennison DR, Schultz PA, Sears MP (1996) Ab initio ammonia and CO lateral interactions on Pt(111). Phys Rev Lett 77:4828–4831CrossRefGoogle Scholar
  15. Kim G, Jhi SH (2011) Carbon monoxide-tolerant platinum nanoparticle catalysts on defect engineered graphene. ACS Nano 5:805–810CrossRefGoogle Scholar
  16. Kresse G, Furthmüller J (1996a) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50CrossRefGoogle Scholar
  17. Kresse G, Furthmüller J (1996b) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186CrossRefGoogle Scholar
  18. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775CrossRefGoogle Scholar
  19. Matsumoto T, Komatsu T, Nakano H, Arai K, Nagashima Y, Yoo E, Yamazaki T, Kijima M, Shimizu H, Takasawa Y (2004) Efficient usage of highly dispersed Pt on carbon nanotubes for electrode catalysts of polymer electrolyte fuel cells. Catal Today 90:277–281CrossRefGoogle Scholar
  20. Meng G, Arkus N, Brenner MP, Manoharan VN (2010) The free-energy landscape of clusters of attractive hard spheres. Science 327:560–563CrossRefGoogle Scholar
  21. Neto AHC, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162CrossRefGoogle Scholar
  22. Okazaki-Maeda K, Yamakawa S, Morikawa Y, Akita T, Tanaka S, Hyodo S, Kohyama M (2008) Simulation of growth process of Pt-particle-first-principles calculation. J Phys Conf Ser 100:072044CrossRefGoogle Scholar
  23. Okazaki-Maeda K, Morikawa Y, Tanaka S, Kohyama M (2010) Structures of Pt clusters on graphene by first-principles calculations. Surf Sci 604:144–154CrossRefGoogle Scholar
  24. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  25. Prabhuram J, Zhao TS, Tang ZK, Chen R, Liang ZX (2006) Multiwalled carbon nanotube supported PtRu for the anode of direct methanol fuel cells. J Phys Chem B 110:5245–5252CrossRefGoogle Scholar
  26. Seidel YE, Schneider A, Jusys Z, Wickman B, Kasemo B, Behm RJ (2009) Transport effects in the electrooxidation of methanol studied on nanostructured Pt/glassy carbon electrodes. Langmuir 26:3569–3578CrossRefGoogle Scholar
  27. Shen QM, Jiang LP, Zhang H, Min QH, Hou WH, Zhu JJ (2008) Three-dimensional dendritic Pt nanostructures: sonoelectrochemical synthesis and electrochemical applications. J Phys Chem C 112:16385–16392CrossRefGoogle Scholar
  28. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286CrossRefGoogle Scholar
  29. Stroppa A, Kresse G (2008) The shortcomings of semi-local and hybrid functionals: what we can learn from surface science studies. New J Phys 10:063020CrossRefGoogle Scholar
  30. Stroppa A, Termentzidis K, Paier J, Kresse G, Hafner J (2007) CO adsorption on metal surfaces: a hybrid functional study with plane-wave basis set. Phys Rev B 76:195440CrossRefGoogle Scholar
  31. Wang L, Tian CG, Wang H, Ma YG, Wang BL, Fu HG (2010) Mass production of graphene via an in situ self-generating template route and its promoted activity as electrocatalytic support for methanol electroxidization. J Phys Chem C 114:8727–8733CrossRefGoogle Scholar
  32. Warner JH, Hoshino A, Yamamoto K, Tilley RD (2005) Water-soluble photoluminescent silicon quantum dots. Angew Chem Int Ed 44:4550–4553CrossRefGoogle Scholar
  33. Yoo E, Okada T, Okada T, Kizuka T, Nakamura J (2008) Effect of carbon substrate materials as a Pt–Ru catalyst support on the performance of direct methanol fuel cells. J Power Sources 180:221–226CrossRefGoogle Scholar
  34. Yoo EJ, Okata T, Akita T, Kohyama M, Nakamura J, Honma I (2009) Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. Nano Lett 9:2255–2259CrossRefGoogle Scholar
  35. Yoo EJ, Okada T, Akita T, Kohyama M, Honma I, Nakamura JJ (2011) Sub-nano-Pt cluster supported on graphene nanosheets for CO tolerant catalysts in polymer electrolyte fuel cells. J Power Sources 196:110–115CrossRefGoogle Scholar
  36. Zainoodin AM, Kamarudin SK, Daud WRW (2010) Electrode in direct methanol fuel cells. Int J Hydrogen Energ 35:4606–4621CrossRefGoogle Scholar
  37. Zhang H, Yin YJ, Hu YJ, Li CY, Wu P, Wei SH, Cai CX (2010a) Pd@Pt core−shell nanostructures with controllable composition synthesized by a microwave method and their enhanced electrocatalytic activity toward oxygen reduction and methanol oxidation. J Phys Chem C 114:11861–11867CrossRefGoogle Scholar
  38. Zhang L, Wang LY, Holt CMB, Navessin T, Malek K, Eikerling MH, Mitlin D (2010b) Oxygen reduction reaction activity and electrochemical stability of thin-film bilayer systems of platinum on niobium oxide. J Phys Chem C 114:16463–16474CrossRefGoogle Scholar
  39. Zhou M, Zhang AH, Dai ZX, Zhang C, Feng YP (2010) Greatly enhanced adsorption and catalytic activity of Au and Pt clusters on defective graphene. J Phys Chem 132:194704CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.College of Physics and Information EngineeringHenan Normal UniversityXinxiangPeople’s Republic of China
  2. 2.Henan Key Laboratory of Photovoltaic MaterialsXinxiangPeople’s Republic of China

Personalised recommendations