A study on hydrogen adsorption behaviors of open-tip carbon nanocones

  • Ming-Liang Liao
Research Paper


Hydrogen adsorption behaviors of single-walled open-tip (tip-truncated) carbon nanocones (CNCs) with apex angles of 19.2° at temperatures of 77 and 300 K were investigated by the molecular dynamics simulations. Four nanomaterials (including three CNCs with different dimensions and a reference CNT) were analyzed to examine the hydrogen adsorption behaviors and influences of cone sharpness on the behaviors of the CNCs. Physisorption of hydrogen molecules could be observed from the distribution pattern of the hydrogen molecules adsorbed on the nanomaterials. Because of the cone geometry effect, the open-tip CNCs could have larger storage weight percentage and less desorption of hydrogen molecules (caused by the temperature growth) on their outer surfaces, as compared with those of the reference CNT. The hydrogen molecules inside the CNCs and the reference CNT, however, were noted to have similar desorption behaviors owing to the confinement effects from the structures of the nanomaterials. In addition, the sharper CNC could have higher storage weight percentage but the cone sharpness does not have evident enhancement in the average adsorption energy of the CNC. Combination of confinement and repulsion effects existing near the tip region of the CNC would be responsible for the non-enhancement feature.


Physisorption Desorption Cone geometry effects Molecular dynamics simulations Modeling and simulation 



The author gratefully acknowledges the support provided to this research by the National Science Council of the Republic of China under Project Grant No. NSC 99-2221-E344-003. The assistance by Miss Chen-Yin Tai in data managing during the project period is also acknowledged. The author also thanks the editor and referees for their helpful recommendations to make this paper more readable.


  1. Chen IC, Chen LH, Gapin A, Jin S, Yuan L, Liou SH (2008) Iron–platinum-coated carbon nanocone probes on tipless cantilevers for high resolution magnetic force imaging. Nanotechnology 19(7):075501CrossRefGoogle Scholar
  2. Cheng H, Cooper AC, Pez GP, Kostov MK, Piotrowski P, Stuart SJ (2005) Molecular dynamics simulations on the effects of diameter and chirality on hydrogen adsorption in single walled carbon nanotubes. J Phys Chem B 109(9):3780–3786CrossRefGoogle Scholar
  3. Diep P, Johnson JK (2000) An accurate H2–H2 interaction potential from first principles. J Chem Phys 112(10):4465CrossRefGoogle Scholar
  4. Dodziuk H, Dolgonos G (2002) Molecular modeling study of hydrogen storage in carbon nanotubes. Chem Phys Lett 356(1–2):79–83CrossRefGoogle Scholar
  5. Eksioglu B, Nadarajah A (2006) Structural analysis of conical carbon nanofibers. Carbon 44(2):360–373CrossRefGoogle Scholar
  6. Endo M, Kim YA, Hayashi T, Fukai Y, Oshida K, Terrones M, Yanagisawa T, Higaki S, Dresselhaus MS (2002) Structural characterization of cup-stacked-type nanofibers with an entirely hollow core. Appl Phys Lett 80(7):1267CrossRefGoogle Scholar
  7. Fernandez-Alonzo F, Bermejo FJ, Cabrillo C, Loutfy RO, Leon V, Saboungi ML (2007) Nature of the bound states of molecular hydrogen in carbon nanohorns. Phys Rev Lett 98(21):215503CrossRefGoogle Scholar
  8. Ge M, Sattler K (1994) Observation of fullerene cones. Chem Phys Lett 220(3–5):192–196CrossRefGoogle Scholar
  9. Gogotsi Y, Dimovski S, Libera JA (2002) Conical crystals of graphite. Carbon 40(12):2263–2267CrossRefGoogle Scholar
  10. Haile JM (1992) Molecular dynamics simulation: elementary methods. Wiley-Interscience, New YorkGoogle Scholar
  11. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31(3):1695–1697CrossRefGoogle Scholar
  12. Hsieh JY, Chen C, Chen JL, Chen CI, Hwang CC (2009) The nanoindentation of a copper substrate by single-walled carbon nanocone tips: a molecular dynamics study. Nanotechnology 20(9):095709CrossRefGoogle Scholar
  13. Huarte-Larranaga F, Alberti M (2007) A molecular dynamics study of the distribution of molecular hydrogen physisorbed on single walled carbon nanotubes. Chem Phys Lett 445(4–6):227–232CrossRefGoogle Scholar
  14. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  15. Iijima S, Yudasaka M, Yamada R, Bandow S, Suenaga K, Kokai F, Taskahashi K (1999) Nano-aggregates of single-walled graphitic carbon nano-horns. Chem Phys Lett 309(3–4):165–170CrossRefGoogle Scholar
  16. Jordan SP, Crespi VH (2004) Theory of carbon nanocones: mechanical chiral inversion of a micron-scale three-dimensional object. Phys Rev Lett 93(25):255504CrossRefGoogle Scholar
  17. Kostov MK, Cheng H, Cooper AC, Pez GP (2002) Influence of carbon curvature on molecular adsorption in carbon-based materials: a force field approach. Phys Rev Lett 89(14):146105CrossRefGoogle Scholar
  18. Krishnan A, Dujardin E, Treacy MMJ, Hugdhl J, Lynum S, Ebbesen TW (1997) Graphitic cones and the nucleation of curved carbon surfaces. Nature 388:451–454CrossRefGoogle Scholar
  19. Lennard-Jones JE (1924) On the determination of molecular fields—II. From the equation of state of a gas. Proc Roy Soc Lond A 106(738):463–477CrossRefGoogle Scholar
  20. Levchenko I, Ostrikov K, Long JD, Xu S (2007) Plasma-assisted self-sharpening of platelet-structured single-crystalline carbon nanocones. Appl Phys Lett 91(11):113115CrossRefGoogle Scholar
  21. Liao ML, Cheng CH, Lin YP (2011) Tensile and compressive behaviors of open-tip carbon nanocones under axial strains. J Mater Res 26(13):1577–1584CrossRefGoogle Scholar
  22. Liew KM, Wei JX, He XQ (2007) Carbon nanocones under compression: buckling and post-buckling behaviors. Phys Rev B 75(19):195435CrossRefGoogle Scholar
  23. Morse PM (1929) Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys Rev 34(1):57–64CrossRefGoogle Scholar
  24. Murata K, Kaneko K, Kanoh H, Kasuya D, Takahashi K, Kokai F, Yudasaka M, Iijima S (2002) Adsorption mechanism of supercritical hydrogen in internal and interstitial nanospaces of single-wall carbon nanohorn assembly. J Phys Chem B 106(43):11132–11138CrossRefGoogle Scholar
  25. Naess SN, Elgsaeter A, Helgesen G, Knudsen KD (2009) Carbon nanocones: wall structure and morphology. Sci Technol Adv Mater 10(6):065002CrossRefGoogle Scholar
  26. Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81(1):511CrossRefGoogle Scholar
  27. Rapaport DC (2004) The art of molecular dynamics simulations. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  28. Sripirom J, Noor S, Koehler U, Schulte A (2011) Easily made and handled carbon nanocones for scanning tunneling microscopy and electroanalysis. Carbon 49(7):2402–2412CrossRefGoogle Scholar
  29. Tanaka H, Kanoh H, El-Merraoui M, Steele WA, Yudasaka M, Iijima S, Kaneko K (2004) Quantum effects on hydrogen adsorption in internal nanospaces of single-wall carbon nanohorns. J Phys Chem B 108(45):17457–17465CrossRefGoogle Scholar
  30. Terrones H, Hayashi T, Muñoz-Navia M, Terrones M, Kim YA, Grobert N, Kamalakaran R, Dorantes-Davila J, Escudero R, Dresselhaus MS, Endo M (2001) Graphitic cones in palladium catalysed carbon nanofibres. Chem Phys Lett 343(3–4):241–250CrossRefGoogle Scholar
  31. Tsai PC, Fang TH (2007) A molecular dynamics study of the nucleation, thermal stability and nanomechanics of carbon nanocones. Nanotechnology 18(10):105702CrossRefGoogle Scholar
  32. Wei JX, Liew KM, He XQ (2007) Mechanical properties of carbon nanocones. Appl Phys Lett 91(26):261906CrossRefGoogle Scholar
  33. Xu WC, Takahashi K, Matsuo Y, Hattori Y, Kumagai M, Ishiyama S, Kaneko K, Iijima S (2007) Investigation of hydrogen storage capacity of various carbon materials. Int J Hydrogen Energy 32(13):2504–2512CrossRefGoogle Scholar
  34. Yu SS, Zheng WT (2010) Effect of N/B doping on the electronic and field emission properties for carbon nanotubes, carbon nanocones, graphene nanoribbons. Nanoscale 2(7):1069–1082CrossRefGoogle Scholar
  35. Yu XF, Tverdal M, Raaen S, Helgesen G, Knudsen KD (2008) Hydrogen adsorption on carbon nanocone material studied by thermal desorption and photoemission. Appl Surf Sci 255(5):1906–1910CrossRefGoogle Scholar
  36. Yudasaka M, Iijima S, Crespi VH (2008) Single-wall carbon nanohorns and nanocones. Top Appl Phys 111:605–629CrossRefGoogle Scholar
  37. Zhang G, Jiang X, Wang E (2003) Tubular graphite cones. Science 300(5618):472–474CrossRefGoogle Scholar
  38. Zolfaghari A, Hashemi F, Pourhossein P, Jooya HZ (2007) Molecular dynamics simulations on the effect of temperature and loading in H2 exohedral adsorption on (3,3) and (9,9) SWCNTs. Int J Hydrogen Energy 32(18):4889–4893CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Aircraft EngineeringAir Force Institute of TechnologyKaohsiungTaiwan, ROC

Personalised recommendations