Ionic liquid-assisted synthesis of carbon nanotube/platinum nanocomposites

  • Hua Zou
  • Yuxia Luan
  • Xiaojun Wang
  • Zhiyun Xie
  • Jijuan Liu
  • Junchao Sun
  • Yana Wang
  • Zhonghao Li
Research Paper


The carbon nanotubes (CNTs) without modification for any functional group are used for the formation of CNTs/Pt nanocomposites in the presence of 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) ionic liquid (IL) at a mild condition. The effects of platinum salt and [BMIM]Cl concentrations on the morphologies of final products are investigated. The as-prepared products are characterized by transmission electron microscopy, powder X-ray diffraction, and cyclic voltammetry. It shows that the as-prepared CNTs/Pt nanocomposites have a good dispersion of Pt particles with tunable size by controlling the concentration of [BMIM]Cl. The Pt particle size of the synthesized CNTs/Pt nanocomposites could be as small as 7 ± 2 nm. The possible formation mechanism of the as-prepared nanocomposites is proposed based on the π–π interaction between the IL and the CNT. The electrochemical response of the synthesized CNTs/Pt nanocomposites to K3(FeCN)6 is studied by cyclic voltammetry measurements, which demonstrates the response increases with the decrease of the Pt particle size. Moreover, the electroactivity for methanol oxidation using the synthesized CNTs/Pt nanocomposites with Pt particle size of 7 ± 2 nm shows that the as-prepared CNTs/Pt nanocomposites have an improved catalytic performance.


Ionic liquid Carbon nanotube nanocomposites Pt nanoparticles 



This work is supported by the National Natural Science Foundation of China (NSFC, nos. 21173127, 20803043), the Excellent Young Scientist Foundation of Shandong Province (BS2009CL002), the Natural Science Foundation of Shandong Province (ZR2011BQ003), Independent Innovation Foundation of Shandong University (IIFSDU), and the Foundation of Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education.


  1. Alonso-Nunez G, Morales de la Garza L, Rogel-Hernandez E, Reynoso E, Licea-Claverie A, Felix-Navarro R, Berhault G, Paraguay-Delgado F (2011) New organometallic salts as precursors for the functionalization of carbon nanotubes with metallic nanoparticles. J Nanopart Res 13(9):3643–3656CrossRefGoogle Scholar
  2. Antonietti M, Kuang D, Smarsly B, Zhou Y (2004) Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures. Angew Chem Int Ed 43(38):4988–4992CrossRefGoogle Scholar
  3. Batra D, Seifert S, Varela LM, Liu A, Firestone MA (2007) Solvent-mediated plasmon tuning in a gold-nanoparticle-poly(ionic liquid) composite. Adv Funct Mater 17(8):1279–1287CrossRefGoogle Scholar
  4. Bezryadin A, Lau C, Tinkham M (2000) Quantum suppression of superconductivity in ultrathin nanowires. Nature 404(6781):971–974CrossRefGoogle Scholar
  5. Dickinson EV, Williams ME, Hendrickson SM, Masui H, Murray RW (1999) Hybrid redox polyether melts based on polyether-tailed counterions. J Am Chem Soc 121(4):613–616CrossRefGoogle Scholar
  6. Ding K, Miao Z, Liu Z, Zhang Z, Han B, An G, Miao S, Xie Y (2007) Facile synthesis of high quality TiO2 nanocrystals in ionic liquid via a microwave-assisted process. J Am Chem Soc 129(20):6362–6363CrossRefGoogle Scholar
  7. Endres F, Abedin SZE (2006) Air and water stable ionic liquids in physical chemistry. Phys Chem Chem Phys 8(18):2101–2116CrossRefGoogle Scholar
  8. Fukushima T, Aida T (2007) Ionic liquids for soft functional materials with carbon nanotubes. Chem Eur J 13(18):5048–5058CrossRefGoogle Scholar
  9. Fukushima T, Kosaka A, Ishimura Y, Yamamoto T, Takigawa T, Ishii N, Aida T (2003) Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science 300(5628):2072–2074CrossRefGoogle Scholar
  10. Girishkumar G, Vinodgopal K, Kamat P (2004) Carbon nanostructures in portable fuel cells: single-walled carbon nanotube electrodes for methanol oxidation and oxygen reduction. J Phys Chem B 108(52):19960–19966CrossRefGoogle Scholar
  11. Guo SJ, Dong SJ, Wang EK (2010) Constructing carbon nanotube/Pt nanoparticle hybrids using an imidazolium-salt-based ionic liquid as a linker. Adv Mater 22(11):1269–1272CrossRefGoogle Scholar
  12. Hala Farag K, Endres F (2008) Studies on the synthesis of nano-alumina in air and water stable ionic liquids. J Mater Chem 18(4):442–449CrossRefGoogle Scholar
  13. Huddleston JG, Willauer HD, Swatloski RP, Visser AE, Rogers RD (1998) Room temperature ionic liquids as novel media for ‘clean’ liquid–liquid extraction. Chem Commun 16:1765–1766CrossRefGoogle Scholar
  14. Kaper H, Endres F, Djerdj I, Antonietti M, Smarsly B, Maier J, Hu YS (2007) Direct low-temperature synthesis of rutile nanostructures in ionic liquids. Small 3(10):1753–1763CrossRefGoogle Scholar
  15. Karousis N, Tagmatarchis N, Tasis D (2010) Current progress on the chemical modification of carbon nanotubes. Chem Rev 110(9):5366–5397CrossRefGoogle Scholar
  16. Li Z, Friedrich A, Taubert A (2008a) Gold microcrystal synthesis via reduction of HAuCl4 by cellulose in the ionic liquid 1-butyl-3-methyl imidazolium chloride. J Mater Chem 18(9):1008–1014CrossRefGoogle Scholar
  17. Li Z, Geßner A, Richters J, Kalden J, Voss T, Kubel C, Taubert A (2008b) Hollow zinc oxide mesocrystals from an ionic liquid precursor (ILP). Adv Mater 20(7):1279–1285CrossRefGoogle Scholar
  18. Li Z, Jia Z, Luan Y, Mu T (2008c) Ionic liquids for synthesis of inorganic nanomaterial. Curr Opin Solid State Mater Sci 12(1):1–8CrossRefGoogle Scholar
  19. Li Z, Luan Y, Mu T, Chen G (2009a) Unusual nanostructured ZnO particles from an ionic liquid precursor. Chem Commun 10:1258–1260CrossRefGoogle Scholar
  20. Li Z, Luan Y, Wang Q, Zhuang G, Qi Y, Wang Y, Wang C (2009b) ZnO nanostructure construction on zinc foil: the concept from an ionic liquid precursor aqueous solution. Chem Commun 41:6273–6275CrossRefGoogle Scholar
  21. Li Z, Yu Q, Luan Y, Zhuang G, Fan R, Li R, Wang C (2009c) Morphology-controlled ZnO particles from an ionic liquid precursor. CrystEngComm 11(12):2683–2687CrossRefGoogle Scholar
  22. Ma Z, Yu JH, Dai S (2010) Preparation of inorganic materials using ionic liquids. Adv Mater 22(2):261–285CrossRefGoogle Scholar
  23. Murugesan S, Myers K, Subramanian V (2011) Amino-functionalized and acid treated multi-walled carbon nanotubes as supports for electrochemical oxidation of formic acid. Appl Catal B 103:266–274CrossRefGoogle Scholar
  24. Parnham ER, Morris RE (2007) Ionothermal synthesis of zeolites, metal-organic frameworks, and inorganic–organic hybrids. Acc Chem Res 40(10):1005–1013CrossRefGoogle Scholar
  25. Quinn B, Dekker C, Lemay S (2005) Electrodeposition of noble metal nanoparticles on carbon nanotubes. J Am Chem Soc 127(17):6146–6147CrossRefGoogle Scholar
  26. Redel E, Thomann R, Janiak C (2008) Use of ionic liquids (ILs) for the IL-anion size-dependent formation of Cr, Mo and W nanoparticles from metal carbonyl M(CO)(6) precursors. Chem Commun (15):1789–1791Google Scholar
  27. Scheeren CW, Machado G, Teixeira SR, Morais J, Domingos JB, Dupont J (2006) Synthesis and characterization of Pt(0) nanoparticles in imidazolium ionic liquids. J Phys Chem B 110(26):13011–13020CrossRefGoogle Scholar
  28. Sheldon R (2001) Catalytic reactions in ionic liquids. Chem Commun 22:2399–2407CrossRefGoogle Scholar
  29. Taubert A (2005a) (Sub)micron CaF2 cubes and hollow rods from ionic liquid emulsions. Acta Chim Slov 52(2):168–170Google Scholar
  30. Taubert A (2005b) Inorganic materials synthesis—a bright future for ionic liquids. Acta Chim Slov 52(3):183–186Google Scholar
  31. Taubert A, Li Z (2007) Inorganic materials from ionic liquids. Dalton Trans (7):723–727 Google Scholar
  32. Taubert A, Arbell I, Mecke A, Graf P (2006) Photoreduction of a crystalline Au(III) complex: a solid-state approach to metallic nanostructures. Gold Bull 39(4):205–211CrossRefGoogle Scholar
  33. Taubert A, Palivan C, Casse O, Gozzo F, Schmitt B (2007) Ionic liquid-crystal precursors (ILCPs) for CuCl platelets: the origin of the exothermic peak in the DSC curves. J Phys Chem C 111(11):4077–4082CrossRefGoogle Scholar
  34. Tian Q, Jiang S, Liang Y, Shen P (2006) Synthesis and characterization of platinum catalysts on multiwalled carbon nanotubes by intermittent microwave irradiation for fuel cell applications. J Phys Chem B 110(11):5343–5350CrossRefGoogle Scholar
  35. Wang Y, Yang H (2005) Synthesis of CoPt nanorods in ionic liquids. J Am Chem Soc 127(15):5316–5317CrossRefGoogle Scholar
  36. Warakulwit C, Nguyen T, Majimel J, Delville MH, Lapeyre V, Garrigue P, Ravaine V, Limtrakul J, Kuhn A (2008) Dissymmetric carbon nanotubes by bipolar electrochemistry. Nano Lett 8(2):500–504CrossRefGoogle Scholar
  37. Zheng S, Hu J, Zhong L, Wan L, Song W (2007) In situ one-step method for preparing carbon nanotubes and Pt composite catalysts and their performance for methanol oxidation. J Phys Chem C 111(30):11174–11179CrossRefGoogle Scholar
  38. Zhou Y, Schattka JH, Antonietti M (2004) Room-temperature ionic liquids as template to monolithic mesoporous silica with wormlike pores via a sol–gel nanocasting technique. Nano Lett 4(3):477–481CrossRefGoogle Scholar
  39. Zhu Y, Wang W, Qi R, Hu X (2004) Microwave-assisted synthesis of single-crystalline tellurium nanorods and nanowires in ionic liquids. Angew Chem Int Ed 43(11):1410–1414CrossRefGoogle Scholar
  40. Zou H, Luan Y, Wang Y, Li R, Ge J, Li Z (2011) Synthesis of ZnO particles on zinc foil in ionic liquid precursors. CrystEngComm 13(7):2656–2660CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Hua Zou
    • 1
  • Yuxia Luan
    • 2
  • Xiaojun Wang
    • 1
  • Zhiyun Xie
    • 1
  • Jijuan Liu
    • 1
  • Junchao Sun
    • 1
  • Yana Wang
    • 1
  • Zhonghao Li
    • 1
  1. 1.Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and EngineeringShandong UniversityJinanPeople’s Republic of China
  2. 2.School of Pharmaceutical SciencesShandong UniversityJinanPeople’s Republic of China

Personalised recommendations