Skip to main content
Log in

Modeling nanoparticle uptake and intracellular distribution using stochastic process algebras

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Computational modeling is increasingly important to help understand the interaction and movement of nanoparticles (NPs) within living cells, and to come to terms with the wealth of data that microscopy imaging yields. A quantitative description of the spatio-temporal distribution of NPs inside cells; however, it is challenging due to the complexity of multiple compartments such as endosomes and nuclei, which themselves are dynamic and can undergo fusion and fission and exchange their content. Here, we show that stochastic pi calculus, a widely-used process algebra, is well suited for mapping surface and intracellular NP interactions and distributions. In stochastic pi calculus, each NP is represented as a process, which can adopt various states such as bound or aggregated, as well as be passed between processes representing location, as a function of predefined stochastic channels. We created a pi calculus model of gold NP uptake and intracellular movement and compared the evolution of surface-bound, cytosolic, endosomal, and nuclear NP densities with electron microscopy data. We demonstrate that the computational approach can be extended to include specific molecular binding and potential interaction with signaling cascades as characteristic for NP-cell interactions in a wide range of applications such as nanotoxicity, viral infection, and drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alberola AP, Radler JO (2009) The defined presentation of nanoparticles to cells and their surface controlled uptake. Biomaterials 30:3766–3770

    Article  CAS  Google Scholar 

  • Alivisatos AP, Gu W, Larabell C (2005) Quantum dots as cellular probes. Ann Rev Biomed Eng 7:55–76

    Article  CAS  Google Scholar 

  • Bartczak D, Sanchez-Elsner T, Louafi F, Millar TM, Kanaras AG (2011) Receptor-mediated interactions between colloidal gold nanoparticles and human umbilical vein endothelial cells. Small 7:388–394

    Article  CAS  Google Scholar 

  • Boeckle S, Wagner E (2006) Optimizing targeted gene delivery: chemical modification of viral vectors and synthesis of artificial virus vector systems. AAPS J 8:E731–E742

    Article  CAS  Google Scholar 

  • Callahan J, Kopeckova P, Kopecek J (2009) Intracellular trafficking and subcellular distribution of a large array of HPMA copolymers. Biomacromolecules 10:1704–1714

    Article  CAS  Google Scholar 

  • Cardelli L (2005) Brane calculi—interactions of biological membranes. Lect Notes Comput Sci 3082:257–278

    Article  Google Scholar 

  • Cedervall T et al (2007) Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA 104:2050–2055

    Article  CAS  Google Scholar 

  • Chithrani BD, Chan WCW (2007) Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 7:1542–1550

    Article  CAS  Google Scholar 

  • Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668

    Article  CAS  Google Scholar 

  • Danos V, Pradalier S (2005) Projective Brane calculus. Lect Notes Comput Sci 3082:134–148

    Article  Google Scholar 

  • David MPC, Bantang JY, Mendoza ER (2009) A projective Brane calculus with activate, bud and mate as primitive actions. Trans Comput Syst Biol XI 5750:164–186

    Article  Google Scholar 

  • de Bruin KG et al (2008) Dynamics of photoinduced endosomal release of polyplexes. J Control Release 130:175–182

    Article  Google Scholar 

  • Dell’Orco D, Lundqvist M, Oslakovic C, Cedervall T, Linse S (2010) Modeling the time evolution of the nanoparticle-protein corona in a body fluid. PLoS One 5(6):e10949

    Article  Google Scholar 

  • Dinh AT, Pangarkar C, Theofanous T, Mitragotri S (2007) Understanding intracellular transport processes pertinent to synthetic gene delivery via stochastic simulations and sensitivity analyses. Biophys J 92:831–846

    Article  CAS  Google Scholar 

  • Dobay MP, Dobay A, Bantang J, Mendoza E (2011) How many trimers? Modeling influenza virus fusion yields a minimum aggregate size of six trimers, three of which are fusogenic. Mol Biosys 7(10):2741–2749

    Article  CAS  Google Scholar 

  • Faller D, Klingmuller U, Timmer J (2003) Simulation methods for optimal experimental design in systems biology. Simul Trans Soc Model Simul 79:717–725

    Article  Google Scholar 

  • Fisher J, Henzinger TA (2007) Executable cell biology. Nat Biotechnol 25:1239–1249

    Article  CAS  Google Scholar 

  • Garcia-Garcia E et al (2005) A methodology to study intracellular distribution of nanoparticles in brain endothelial cells. Int J Pharm 298:310–314

    Article  CAS  Google Scholar 

  • Gillespie DT (1977) Exact stochastic simulation of coupled chemical-reactions. J Phys Chem 81:2340–2361

    Article  CAS  Google Scholar 

  • Haddish-Berhane N, Rickus JL, Haghighi K (2007) The role of multiscale computational approaches for rational design of conventional and nanoparticle oral drug delivery systems. Int J Nanomed 2:315–331

    CAS  Google Scholar 

  • Hiemenz PC, Rajagopalan R (eds) (1997) Principles of colloid and surface chemistry, 3rd edn. Marcel Dekker, New York

  • Khan JA, Pillai B, Das TK, Singh Y, Maiti S (2007) Molecular effects of uptake of gold nanoparticles in HeLa cells. ChemBioChem 8:1237–1240

    Article  CAS  Google Scholar 

  • Kim T, Lee CH, Joo SW, Lee K (2008) Kinetics of gold nanoparticle aggregation: experiments and modeling. J Colloid Interface Sci 318:238–243

    Article  CAS  Google Scholar 

  • Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664

    Article  CAS  Google Scholar 

  • Kjeken R et al (2004) Fusion between phagosomes, early and late endosomes: a role for actin in fusion between late, but not early endocytic organelles. Mol Biol Cell 15:345–358

    Article  CAS  Google Scholar 

  • Kneipp J, Kneipp H, McLaughlin M, Brown D, Kneipp K (2006) In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates. Nano Lett 6:2225–2231

    Article  CAS  Google Scholar 

  • Leduc C, Jung JM, Carney RR, Lounis B, Stellacci F (2011) Direct investigation of intracellular presence of gold nanoparticles via photothermal heterodyne imaging. ACS Nano 5:2587–2592

    Article  CAS  Google Scholar 

  • Lévy R, Shaheen U, Cesbron Y, Sée V (2010) Gold nanoparticles delivery in mammalian live cells: a critical review. Nano Rev 1

  • Li N et al (2003) Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 111:455–460

    Article  CAS  Google Scholar 

  • Luccardini C et al (2007) Getting across the plasma membrane and beyond: intracellular uses of colloidal semiconductor nanocrystals. J Biomed Biotechnol 2007:68963

    Article  Google Scholar 

  • Lundqvist M et al (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 105:14265–14270

    Article  CAS  Google Scholar 

  • Lynch I et al (2007) The nanoparticle—protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century. Adv Colloid Interface 134–35:167–174

    Article  Google Scholar 

  • Milner R (1999) Communicating and mobile systems: the pi-calculus. Cambridge University Press, Cambridge, England

    Google Scholar 

  • Moles CG, Mendes P, Banga JR (2003) Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res 13:2467–2474

    Article  CAS  Google Scholar 

  • Moore NM, Sheppard CL, Barbour TR, Sakiyama-Elbert SE (2008) The effect of endosomal escape peptides on in vitro gene delivery of polyethylene glycol-based vehicles. J Gene Med 10:1134–1149

    Article  CAS  Google Scholar 

  • Muller L et al (2010) Oxidative stress and inflammation response after nanoparticle exposure: differences between human lung cell monocultures and an advanced three-dimensional model of the human epithelial airways. J R Soc Interface 7(Suppl 1):S27–S40

    Article  Google Scholar 

  • Murphy CJ et al (2008) Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 41:1721–1730

    Article  CAS  Google Scholar 

  • Nativo P, Prior IA, Brust M (2008) Uptake and intracellular fate of surface-modified gold nanoparticles. ACS Nano 2:1639–1644

    Article  CAS  Google Scholar 

  • Nel AE et al (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557

    Article  CAS  Google Scholar 

  • Park EJ et al (2008) Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol Lett 180:222–229

    Article  CAS  Google Scholar 

  • Phillips A, Cardelli L (2004) A correct abstract machine for the stochastic pi-calculus. In Proceedings of BioCONCUR 2004. London

  • Priami C (2009) Algorithmic systems biology. Commun ACM 52:80–88

    Article  Google Scholar 

  • Priami C, Quaglia P (2005) Beta binders for biological interactions. Lect Notes Comput Sci 3082:20–33

    Article  Google Scholar 

  • Puzyn T et al (2011) Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat Nanotechnol 6:175–178

    Article  CAS  Google Scholar 

  • Regev A, Panina EM, Silverman W, Cardelli L, Shapiro E (2004) BioAmbients: an abstraction for biological compartments. Theor Comput Sci 325:141–167

    Article  Google Scholar 

  • Salvati A et al (2011) Experimental and theoretical comparison of intracellular import of polymeric nanoparticles and small molecules: toward models of uptake kinetics. Nanomedicine 7(6):816–826

    Google Scholar 

  • Sauer AM et al (2009) Dynamics of magnetic lipoplexes studied by single particle tracking in living cells. J Control Release 137:136–145

    Article  CAS  Google Scholar 

  • Schwake G et al (2010) Predictive modeling of non-viral gene transfer. Biotechnol Bioeng 105:805–813

    CAS  Google Scholar 

  • Service RF (2011) Computer models coming soon to a lab near you: drag-and-drop virtual worlds. Science 331:669–671

    Article  CAS  Google Scholar 

  • Singh S, Kumar A, Karakoti A, Seal S, Self WT (2010) Unveiling the mechanism of uptake and sub-cellular distribution of cerium oxide nanoparticles. Mol BioSyst 6:1813–1820

    Article  CAS  Google Scholar 

  • Sperling RA, Rivera Gil P, Zhang F, Zanella M, Parak WJ (2008) Biological applications of gold nanoparticles. Chem Soc Rev 37:1896–1908

    Article  CAS  Google Scholar 

  • Stark WJ (2011) Nanoparticles in biological systems. Angew Chem Int Ed 50:1242–1258

    Article  CAS  Google Scholar 

  • Summers HD et al (2011) Statistical analysis of nanoparticle dosing in a dynamic cellular system. Nat Nanotechnol 6:170–174

    Article  CAS  Google Scholar 

  • van de Waterbeemd H, Gifford E (2003) ADMET in silico modelling: towards prediction paradise? Nat Rev Drug Discov 2:192–204

    Article  Google Scholar 

  • Van Hoecke K et al (2009) Fate and effects of CeO2 nanoparticles in aquatic ecotoxicity tests. Environ Sci Technol 43:4537–4546

    Article  Google Scholar 

  • Xia T et al (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6:1794–1807

    Article  CAS  Google Scholar 

  • Zhao J et al (2009) Titanium dioxide (TiO2) nanoparticles induce JB6 cell apoptosis through activation of the caspase-8/bid and mitochondrial pathways. J Toxicol Environ Health A 72:1141–1149

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was initially funded by the EU-FP6 project NanoInteract (contract 033231) and was vitally inspired by the EU-FP7 project “Transkinetics”. Further support was received from the excellence cluster nanosystems initiative Munich (NIM) and the Center for NanoScience (CeNS). MPD gratefully acknowledges the Deutscher Akademischer Austausch Dienst for her Ph. D scholarship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. P. D. Dobay or J. O. Rädler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobay, M.P.D., Alberola, A.P., Mendoza, E.R. et al. Modeling nanoparticle uptake and intracellular distribution using stochastic process algebras. J Nanopart Res 14, 821 (2012). https://doi.org/10.1007/s11051-012-0821-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0821-9

Keywords

Navigation