Advertisement

Tuning the electronic and optical properties of hydrogen-terminated Si nanocluster by uniaxial compression

  • Xue Jiang
  • Jijun Zhao
  • Xin Jiang
Research Paper

Abstract

The structural, electronic, and optical properties of hydrogen-terminated Si nanocluster (Si66H64) with a diameter of 1.3 nm under uniaxial compression have been investigated by means of density functional theory calculations. The structural deformation of silicon nanoparticle under axial strain manifests as reduction of cluster symmetry, contraction of bond length, and broadening of bond angle distribution. Such strain-induced distortion modifies the highest occupied molecular orbital (HOMO) the lowest unoccupied molecular orbital (LUMO) eigenvalues, HOMO–LUMO gap, and isosurfaces of HOMO and LUMO wavefunctions, that is, the HOMO–LUMO gap diminishes as strain increases and isosurface of HOMO and LUMO wavefunctions redistributes along the strain orientation. Moreover, uniaxial compression has a strong influence on the optical absorption spectra of the Si66H64 cluster. With increasing strain, the onset of absorption spectra red shifts. Interestingly, the strain-tunable photoluminescence in Si nanoparticle (Si66H64) can cover a broad spectrum (i.e., from visible light to ultraviolet), implying an exciting possibility for optical devices.

Keywords

Si quantum dot Uniaxial compression Electronic properties Optical absorption spectra 

Notes

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities of China (No. DUT10ZD211) and National Natural Science Foundation of China (11134005).

References

  1. Beck TL (2000) Real-space mesh techniques in density-functional theory. Rev Mod Phys 72:1041CrossRefGoogle Scholar
  2. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  3. Belomoin G, Therrien J, Smith A, Rao S, Twesten R, Chaieb S, Nayfeh MH, Wagner L, Mitas L (2002) Observation of a magic discrete family of ultrabright Si nanoparticles. Appl Phys Lett 80:841–843CrossRefGoogle Scholar
  4. Benedict LX, Puzder A, Williamson AJ, Grossman JC, Galli G, Klepeis JE, Raty JY, Pankratov O (2003) Calculation of optical absorption spectra of hydrogenated Si clusters: Bethe-Salpeter equation versus time-dependent local-density approximation. Phys Rev B 68:085310CrossRefGoogle Scholar
  5. Bowler DR et al (1998) Hydrogen diffusion on Si(001) studied with the local density approximation and tight binding. J Phys Condens Matter 10:3719CrossRefGoogle Scholar
  6. Buda F, Fasolino A (1999) Strained semiconductor clusters in sodalite. Phys Rev B 60:6131CrossRefGoogle Scholar
  7. Buriak JM (2002) Organometallic chemistry on silicon and germanium surfaces. Chem Rev 102:1271–1308CrossRefGoogle Scholar
  8. Degoli E, Cantele G, Luppi E, Magri R, Ninno D, Bisi O, Ossicini S (2004) Ab initio structural and electronic properties of hydrogenated silicon nanoclusters in the ground and excited state. Phys Rev B 69:155411CrossRefGoogle Scholar
  9. Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508–517CrossRefGoogle Scholar
  10. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298:1759–1762CrossRefGoogle Scholar
  11. Elabsy AM, Degheidy AR, Abdelwahed HG, Elkenany EB (2010) Pressure response to electronic structures of bulk semiconductors at room temperature. Phys B 405:3709–3713CrossRefGoogle Scholar
  12. Feher F (1977) Molekulspektroskopische untersuchungen auf dem gebiet der silane und der heterocyclischen sulfane. Westdeutscher, KolnGoogle Scholar
  13. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al (2009) Gaussian 09. Gaussian, Inc., WallingfordGoogle Scholar
  14. Furukawa S, Miyasato T (1988) Quantum size effects on the optical band gap of microcrystalline Si:H. Phys Rev B 38:5726CrossRefGoogle Scholar
  15. Garoufalis CS, Zdetsis AD, Grimme S (2001) High level Ab initio calculations of the optical gap of small silicon quantum dots. Phys Rev Lett 87:276402CrossRefGoogle Scholar
  16. Green M (2004) Semiconductor quantum dots as biological imaging agents. Angew Chem Int Ed 43:4129–4131CrossRefGoogle Scholar
  17. Hamers RJ, Wang Y (1996) Atomically-resolved studies of the chemistry and bonding at Silicon surfaces. Chem Rev 96:1261–1290CrossRefGoogle Scholar
  18. Harris J (1985) Simplified method for calculating the energy of weakly interacting fragments. Phys Rev B Condens Matter 31:1770CrossRefGoogle Scholar
  19. Itoh U, Toyoshima Y, Onuki H, Washida N, Ibuki T (1986) Vacuum ultraviolet absorption cross sections of SiH4, GeH4, Si2H6, and S3H8. J Chem Phys 85:4867–4872CrossRefGoogle Scholar
  20. Jiang X, Zhao J, Zhuang C, Wen B, Jiang X (2010) Mechanical and electronic properties of ultrathin nanodiamonds under uniaxial compressions. Diam Relat Mater 19:21–25CrossRefGoogle Scholar
  21. Jurbergs D, Rogojina E, Mangolini L, Kortshagen U (2006) Silicon nanocrystals with ensemble quantum yields exceeding 60%. Appl Phys Lett 88:233113–233116CrossRefGoogle Scholar
  22. Kang Z, Liu Y, Tsang CHA, Ma DDD, Fan X, Wong NB, Lee ST (2009) Water-soluble silicon quantum dots with wavelength-tunable photoluminescence. Adv Mater 21:661–664CrossRefGoogle Scholar
  23. Kenton AC, Ribarsky MW (1981) Ab initio calculations on hydrogen-bounded silicon clusters. Phys Rev B 23:2897–2910CrossRefGoogle Scholar
  24. Kittel C (2004) Introduction to solid state physics, 8th edn. Wiley, New JerseyGoogle Scholar
  25. Lehtonen O, Sundholm D (2005) Density-functional studies of excited states of silicon nanoclusters. Phys Rev B 72:085424CrossRefGoogle Scholar
  26. Lehtonen O, Sundholm D (2006a) Coupled-cluster studies of the electronic excitation spectra of silanes. J Chem Phys 125:144314–144319CrossRefGoogle Scholar
  27. Lehtonen O, Sundholm D (2006b) Optical properties of sila-adamantane nanoclusters from density-functional theory. Phys Rev B 74:045433CrossRefGoogle Scholar
  28. Li YH, Gong XG, Wei SH (2006) Ab initio all-electron calculation of absolute volume deformation potentials of IV–IV, III–V, and II–VI semiconductors: the chemical trends. Phys Rev B 73:245206CrossRefGoogle Scholar
  29. Mavros MG, Micha DA, Kilin DS (2011) Optical properties of doped silicon quantum dots with crystalline and amorphous structures. J Phys Chem C 115:19529–19537CrossRefGoogle Scholar
  30. Nayfeh M, Akcakir O, Therrien J, Yamani Z, Barry N, Yu W, Gratton E (1999) Highly nonlinear photoluminescence threshold in porous silicon. Appl Phys Lett 75:4112–4114CrossRefGoogle Scholar
  31. Nayfeh MH, Barry N, Therrien J, Akcakir O, Gratton E, Belomoin G (2001) Stimulated blue emission in reconstituted films of ultrasmall silicon nanoparticles. Appl Phys Lett 78:1131–1133CrossRefGoogle Scholar
  32. Onida G, Reining L, Rubio A (2002) Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev Mod Phys 74:601CrossRefGoogle Scholar
  33. Park JH, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ (2009) Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 8:331–336CrossRefGoogle Scholar
  34. Peng XH, Ganti S, Alizadeh A, Sharma P, Kumar SK, Nayak SK (2006) Strain-engineered photoluminescence of silicon nanoclusters. Phys Rev B 74:035339CrossRefGoogle Scholar
  35. Peng XH et al (2007) First-principles investigation of strain effects on the energy gaps in silicon nanoclusters. J Phys Condens Matter 19:266212CrossRefGoogle Scholar
  36. Puzder A, Williamson AJ, Grossman JC, Galli G (2003) Computational studies of the optical emission of silicon nanocrystals. J Am Chem Soc 125:2786–2791CrossRefGoogle Scholar
  37. Rosenberg A, Ozier I (1976) Collision-induced absorption of gaseous silane in the far infrared. J Chem Phys 65:418–424CrossRefGoogle Scholar
  38. Shiohara A, Prabakar S, Faramus A, Hsu CY, Lai PS, Northcote PT, Tilley RD (2011) Sized controlled synthesis, purification, and cell studies with silicon quantum dots. Nanoscale 3:3364–3370CrossRefGoogle Scholar
  39. Smith AM, Mohs AM, Nie S (2009) Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. Nat Nanotechnol 4:56–63CrossRefGoogle Scholar
  40. Takagahara T, Takeda K (1992) Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. Phys Rev B 46:15578CrossRefGoogle Scholar
  41. Thean A, Leburton JP (2001) Strain effect in large silicon nanocrystal quantum dots. Appl Phys Lett 79:1030–1032CrossRefGoogle Scholar
  42. Vasiliev I, Chelikowsky JR, Martin RM (2002) Surface oxidation effects on the optical properties of silicon nanocrystals. Phys Rev B 65:121302CrossRefGoogle Scholar
  43. Wang X, Zhang RQ, Niehaus TA, Frauenheim T, Lee ST (2007) Hydrogenated silicon nanoparticles relaxed in excited states. J Phys Chem C 111:12588–12593CrossRefGoogle Scholar
  44. Warner JH, Hoshino A, Yamamoto K, Tilley RD (2005) Water-soluble photoluminescent silicon quantum dots. Angew Chem Int Ed 44:4550–4554CrossRefGoogle Scholar
  45. Wilcoxon JP, Samara GA, Provencio PN (1999) Optical and electronic properties of Si nanoclusters synthesized in inverse micelles. Phys Rev B 60:2704CrossRefGoogle Scholar
  46. Williamson AJ, Grossman JC, Hood RQ, Puzder A, Galli G (2002) Quantum monte carlo calculations of nanostructure optical gaps: application to silicon quantum dots. Phys Rev Lett 89:196803CrossRefGoogle Scholar
  47. Wilson WL, Szajowski PF, Brus LE (1993) Quantum confinement in size-selected, surface-oxidized silicon nanocrystals. Science 262:1242–1244CrossRefGoogle Scholar
  48. Zdetsis AD (2006) Optical and electronic properties of small size semiconductor nanocrystals and nanoclusters. Rev Adv Mater Sci 11:56–78Google Scholar
  49. Zhang DB, Dumitrica T (2009) Modulating the optical and electronic properties of highly symmetric Si quantum dots. Nanotechnology 20:445401CrossRefGoogle Scholar
  50. Zhou Z, Brus L, Friesner R (2003) Electronic structure and luminescence of 1.1- and 1.4-nm silicon nanocrystals: oxide shell versus hydrogen passivation. Nano Lett 3:163–167CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology)Ministry of EducationDalianChina
  2. 2.College of Advanced Science and TechnologyDalian University of TechnologyDalianChina
  3. 3.School of Material Science and EngineeringDalian University of TechnologyDalianChina
  4. 4.Institute of Materials EngineeringUniversity of SiegenSiegenGermany

Personalised recommendations