Rapid synthesis of triangular CdS nanocrystals without any trap emission

  • Aby Cheruvathoor Poulose
  • Srivani Veeranarayanan
  • Yasuhiko Yoshida
  • Toru Maekawa
  • D. Sakthi Kumar
Research Paper


Nanocrystals (NCs) with anisotropic dimensions display polarized emission compared to nano dots. Triangular prisms are good candidates for polarized optical properties and monodisperse triangular NCs are ideal for developing building blocks for novel three-dimensional superlattices due to its anisotropic dimension. Among triangular nanocrystals, CdS nanocrystals are less discussed for the past one decade of research due to the difficulty in its processing method. Though well studied very few methods for developing CdS triangular nanocrystals have been reported, and most are having drawbacks either due to the time consuming process or the products are combination of triangular as well as many other shaped NC or with trap emissions due to defects which are comparable to band emissions limits its applications in full scale. Here, we are presenting a novel method to develop 7 nm CdS triangular NCs that can solve the above mentioned problems, which would augment the usage of CdS triangular crystals for many applications, based on its anisotropic properties.


CdS Nanocrystals Semiconductors Triangular nanocrystals Photoluminescence Trap emission Organometallic synthesis 



Aby Cheruvathoor Poulose and Srivani Veeranarayanan thank the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan for the financial support, Monbukagakusho fellowship. Authors thank Prof. Katsumata for XRD and Prof. Fukushima for Photoluminescence measurements.

Supplementary material

11051_2012_789_MOESM1_ESM.doc (640 kb)
Supplementary material 1 (DOC 639 kb)


  1. Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016CrossRefGoogle Scholar
  2. Cao CY, Wang J (2004) One-pot synthesis of high-quality zinc-blende cds nanocrystals. J Am Chem Soc 126:14336–14337CrossRefGoogle Scholar
  3. Carbone L, Kudera S, Carlino E, Parak WJ, Giannini C, Cingolani R, Manna L (2006) Multiple wurtzite twinning in CdTe nanocrystals induced by methylphosphonic acid. J Am Chem Soc 128:748–755CrossRefGoogle Scholar
  4. Carbone L, Nobile C, De GM, Della SF, Morello G, Pompa P, Hytch M, Snoeck E, Fiore A, Franchini IR (2007) Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. Nano Lett 7:2942–2950CrossRefGoogle Scholar
  5. Chen XY, Wang X, Wang ZH, Yang XG, Qian YT (2005) Hierarchical growth and shape evolution of HgS dendrites. Cryst Growth Des 5:347–350CrossRefGoogle Scholar
  6. Chen W, Chen K, Peng Q, Li Y (2009) Triangular CdS nanocrystals: rational solvothermal synthesis and optical studies. Small 5:681–684CrossRefGoogle Scholar
  7. Cheng Y, Wang Y, Bao F, Chen D (2006) Shape control of monodisperse CdS nanocrystals: hexagon and pyramid. J Phys Chem B 110:9448–9451CrossRefGoogle Scholar
  8. Choi SH, Kim EG, Park J, An K, Lee N, Kim SC, Hyeon T (2005) Large-scale synthesis of hexagonal pyramid-shaped ZnO nanocrystals from thermolysis of Zn–oleate complex. J Phys Chem B 109:14792–14794CrossRefGoogle Scholar
  9. Coe S, Woo WK, Bawendi M, Bulovic V (2002) Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420:800–803CrossRefGoogle Scholar
  10. Diaz JG, Planelles J (2004) Theoretical characterization of triangular CdS nanocrystals: a tight-binding approach. Langmuir 20:11278–11284CrossRefGoogle Scholar
  11. Dorfs D, Salant A, Popov I, Banin U (2008) ZnSe quantum dots within CdS nanorods: a seeded-growth type-II system. Small 4:1319–1323CrossRefGoogle Scholar
  12. Eisler HJ, Sundar VC, Bawendi MG, Walsh M, Smith HI, Klimov V (2002) Color-selective semiconductor nanocrystal laser. Appl Phys Lett 80:4614–4616CrossRefGoogle Scholar
  13. Ekimov AI, Hache F, Schanne-Klein MC, Ricard D, Flytzanis C, Kudryavtsev IA, Yazeva TV, Rodina AV, Efros Al L (1993) Absorption and intensity-dependent photoluminescence measurements on CdSe quantum dots: assignment of the first electronic transitions. J Opt Soc Am B Opt Phys 10:100–107CrossRefGoogle Scholar
  14. Ghezelbash A, Sigman MB, Korgel BA (2004) Solventless synthesis of nickel sulfide nanorods and triangular nanoprisms. Nano Lett 4:537–542CrossRefGoogle Scholar
  15. Gill R, Zayats M, Willner I (2008) Semiconductor quantum dots for bioanalysis. Angew Chem Int Ed 47:7602–7625CrossRefGoogle Scholar
  16. Hewa KNN, Kirsanova M, Nemchinov A, Schmall N, El-Khoury PZ, Tarnovsky AN, Zamkov M (2009) Radiative recombination of spatially extended excitons in (ZnSe/CdS)/CdS heterostructured nanorods. J Am Chem Soc 131:1328–1334CrossRefGoogle Scholar
  17. Kamat PV (2008) Quantum dot solar cells: semiconductor nanocrystals as light harvesters. J Phys Chem C 112:18737–18753Google Scholar
  18. Kan S, Aharoni A, Mokari T, Banin U (2004) Shape control of III-V semiconductor nanocrystals: synthesis and properties of InAs quantum rods. Faraday Discuss 125:23–38CrossRefGoogle Scholar
  19. Law M, Sirbuly DJ, Johnson JC, Goldberger J, Saykally RJ, Yang PD (2004) Nanoribbon waveguides for sub wavelength photonics integration. Science 305:1269–1273CrossRefGoogle Scholar
  20. Li Y, Li X, Yang C, Li Y (2003) Controlled synthesis of CdS nanorods and hexagonal nanocrystals. J Mater Chem 13:2641–2648CrossRefGoogle Scholar
  21. Lim WP, Wong CT, Ang SL, Low HY, Chin WS (2006) Phase-selective synthesis of copper sulfide nanocrystals. Chem Mater 18:6170–6177CrossRefGoogle Scholar
  22. Liu B, Zeng HC (2003) Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J Am Chem Soc 125:4430–4431CrossRefGoogle Scholar
  23. Manna L, Scher EC, Alivisatos AP (2000) Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J Am Chem Soc 122:12700–12706CrossRefGoogle Scholar
  24. Manna L, Milliron DJ, Meisel A, Scher EC, Alivisatos AP (2003) Controlled growth of tetrapod-branched inorganic nanocrystals. Nat Mater 2:382–385CrossRefGoogle Scholar
  25. Manna L, Wang L, Cingolani R, Alivisatos AP (2005) First-principles modeling of unpassivated and surfactant-passivated bulk facets of wurtzite CdSe: a model system for studying the anisotropic growth of CdSe nanocrystals. J Phys Chem B 109:6183–6192CrossRefGoogle Scholar
  26. Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715CrossRefGoogle Scholar
  27. Peng ZA, Peng X (2001) Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J Am Chem Soc 123:183–184CrossRefGoogle Scholar
  28. Peng X, Manna L, Yang W, Wickham J, Scher E, Kadavanich A, Alivisatos AP (2000) Shape control of CdSe nanocrystals. Nature 404:59–61CrossRefGoogle Scholar
  29. Pinna N, Weiss K, Sack-Kongehl H, Vogel W, Urban J, Pileni MP (2001a) Triangular CdS nanocrystals: synthesis, characterization, and stability. Langmuir 17:7982–7987CrossRefGoogle Scholar
  30. Pinna N, Weiss K, Urban J, Pileni MP (2001b) Triangular CdS nanocrystals: structural and optical studies. Adv Mater 13:261–264CrossRefGoogle Scholar
  31. Rossetti R, Ellison JL, Gibson JM, Brus LE (1984) Size effects in the excited electronic states of small colloidal CdS crystallites. J Chem Phys 80:4464–4469CrossRefGoogle Scholar
  32. Ryan KM, Mastroianni A, Stancil KA, Liu HT, Alivisatos AP (2006) Electric-field-assisted assembly of perpendicularly oriented nanorod superlattices. Nano Lett 6:1479–1482CrossRefGoogle Scholar
  33. Scher EC, Manna L, Alivisatos AP (2003) Shape control and applications of nanocrystals. Philos Trans R Soc Lond Ser A 361:241–255CrossRefGoogle Scholar
  34. Skrabalak SE, Xia Y (2009) Pushing nanocrystal synthesis toward nanomanufacturing. ACS Nano 3:10–15CrossRefGoogle Scholar
  35. Tessler N, Medvedev V, Kazes M, Kan SH, Banin U (2002) Efficient near-infrared polymer nanocrystal light-emitting diodes. Science 295:1506–1508CrossRefGoogle Scholar
  36. Warner JH, Tilley RD (2005) Synthesis and self-assembly of triangular and hexagonal CdS nanocrystals. Adv Mater 17:2997–3001CrossRefGoogle Scholar
  37. Wolcott A, Fitzmorris RC, Muzaffery O, Zhang JZ (2010) CdSe quantum rod formation aided by in situ TOPO oxidation. Chem Mater 22:2814–2821CrossRefGoogle Scholar
  38. Yang Q, Sha J, Wang L, Wang Y, Ma X, Wang J, Yang D (2004) Synthesis of MgO nanotube bundles. Nanotechnology 15:1004–1008CrossRefGoogle Scholar
  39. Yu WW, Peng X (2002) Formation of high-quality CdS and other II–VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers. Angew Chem Int Ed 41:2368–2371CrossRefGoogle Scholar
  40. Yu H, Li J, Loomis RA, Wang LW, Buhro WE (2003) Two-versus three-dimensional quantum confinement in indium phosphide wires and dots. Nat Mater 2:517–520CrossRefGoogle Scholar
  41. Zaban A, Mićić OI, Gregg BA, Nozik AJ (1998) Photosensitization of nanoporous TiO2 electrodes with InP quantum dots. Langmuir 14:3153–3156CrossRefGoogle Scholar
  42. Zhang LJ, Shen CX, Liang H, Guo S, Liang ZH (2010) Hot-injection synthesis of highly luminescent and monodisperse CdS nanocrystals using thioacetamide and cadmium source with proper reactivity. J Colloid Interface Sci 342:236–242CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Aby Cheruvathoor Poulose
    • 1
  • Srivani Veeranarayanan
    • 1
  • Yasuhiko Yoshida
    • 1
  • Toru Maekawa
    • 1
  • D. Sakthi Kumar
    • 1
  1. 1.Bio Nano Electronics Research Center, Graduate School of Interdisciplinary New ScienceToyo UniversityKawagoeJapan

Personalised recommendations