Tailoring nanomaterial products through electrode material and oxygen partial pressure in a mini-arc plasma reactor

  • Shumao Cui
  • Eric C. Mattson
  • Ganhua Lu
  • Carol Hirschmugl
  • Marija Gajdardziska-Josifovska
  • Junhong Chen
Research Paper


Nanomaterials with controllable morphology and composition are synthesized by a simple one-step vapor condensation process using a mini-arc plasma source. Through systematic investigation of mini-arc reactor parameters, the roles of carrier gas, electrode material, and precursor on producing diverse nanomaterial products are revealed. Desired nanomaterial products, including tungsten oxide nanoparticles (NPs), tungsten oxide nanorods (NRs), tungsten oxide and tin oxide NP mixtures and pure tin dioxide NPs can thus be obtained by tailoring reaction conditions. The amount of oxygen in the reactor is critical to determining the final nanomaterial product. Without any precursor material present, a lower level of oxygen in the reactor favors the production of W18O49 NRs with tungsten as cathode, while a high level of oxygen produces more round WO3 NPs. With the presence of a precursor material, amorphous particles are favored with a high ratio of argon:oxygen. Oxygen is also found to affect tin oxide crystallization from its amorphous phase in the thermal annealing. Results from this study can be used for guiding gas phase nanomaterial synthesis in the future.


Nanoparticle Nanorod Mini-arc plasma Oxygen partial pressure Gas phase 



The authors would like to thank the financial support from the National Science Foundation (CMMI-0856753 and CMMI-0900509). The EDX was conducted at the Electron Microscope Laboratory of University of Wisconsin-Milwaukee (UWM). TEM analyses were conducted in the UWM HRTEM Laboratory. The authors thank Mr. Donald Roberson for technical support with TEM analyses and anonymous reviewers for their thoughtful comments.


  1. Banerjee I, Karmakar S, Kulkarni NV, Nawale AB, Mathe VL, Das AK, Bhoraskar SV (2010) Effect of ambient pressure on the crystalline phase of nano TiO2 particles synthesized by a dc thermal plasma reactor. J Nanopart Res 12(2):581–590. doi: 10.1007/s11051-009-9627-9 CrossRefGoogle Scholar
  2. Buesser B, Heine MC, Pratsinis SE (2009) Coagulation of highly concentrated aerosols. J Aerosol Sci 40(2):89–100. doi: 10.1016/j.jaerosci.2008.09.005 CrossRefGoogle Scholar
  3. Bursill LA (1983) Structure of small defects in nonstoichiometric WO3−x. J Solid State Chem 48(2):256–271CrossRefGoogle Scholar
  4. Chazelas C, Coudert JF, Jarrige J, Fauchais P (2006) Synthesis of ultra fine particles by plasma transferred arc: influence of anode material on particle properties. J Eur Ceram Soc 26(16):3499–3507. doi: 10.1016/j.jeurceramsoc.2006.01.018 CrossRefGoogle Scholar
  5. Chen JH, Lu GH, Zhu LY, Flagan RC (2007) A simple and versatile mini-arc plasma source for nanocrystal synthesis. J Nanopart Res 9(2):203–213. doi: 10.1007/s11051-006-9168-4 CrossRefGoogle Scholar
  6. Chen CL, Wei YL, Chen DR, Jiao XL (2011) Indium oxide nanocrystals: capping-agent-free synthesis, size-control mechanism, and high gas-sensing performance. Mater Chem Phys 125(1–2):299–304. doi: 10.1016/j.matchemphys.2010.09.042 CrossRefGoogle Scholar
  7. Chiu HC, Yeh CS (2007) Hydrothermal synthesis of SnO2 nanoparticles and their gas-sensing of alcohol. J Phys Chem C 111(20):7256–7259. doi: 10.1021/Jp0688355 CrossRefGoogle Scholar
  8. Collins GS, Kachnowski T, Benczer-Koller N, Pasternak M (1979) Application of the Mossbauer effect to the characterization of an amorphous tin-oxide system. Phys Rev B 19(3):1369CrossRefGoogle Scholar
  9. Cui SM, Lu GH, Mao S, Yu KH, Chen JH (2010) One-dimensional tungsten oxide growth through a grain-by-grain buildup process. Chem Phys Lett 485(1–3):64–68. doi: 10.1016/j.cplett.2009.11.064 CrossRefGoogle Scholar
  10. Cvelbar U, Chen ZQ, Sunkara MK, Mozetic M (2008) Spontaneous growth of superstructure alpha-Fe2O3 nanowire and nanobelt arrays in reactive oxygen plasma. Small 4(10):1610–1614. doi: 10.1002/smll.200800278 CrossRefGoogle Scholar
  11. Dai ZR, Pan ZW, Wang ZL (2001) Ultra-long single crystalline nanoribbons of tin oxide. Solid State Commun 118(7):351–354CrossRefGoogle Scholar
  12. Dai ZR, Gole JL, Stout JD, Wang ZL (2002) Tin oxide nanowires, nanoribbons, and nanotubes. J Phys Chem B 106(6):1274–1279. doi: 10.1021/Jp013214r CrossRefGoogle Scholar
  13. Dai ZR, Pan ZW, Wang ZL (2003) Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv Funct Mater 13(1):9–24CrossRefGoogle Scholar
  14. Du N, Zhang H, Ma XY, Yang D (2008) Homogeneous coating of Au and SnO2 nanocrystals on carbon nanotubes via layer-by-layer assembly: a new ternary hybrid for a room-temperature CO gas sensor. Chem Commun 46:6182–6184. doi: 10.1039/B812695j CrossRefGoogle Scholar
  15. Duan XF, Huang Y, Cui Y, Wang JF, Lieber CM (2001) Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409(6816):66–69CrossRefGoogle Scholar
  16. Ebbesen TW, Ajayan PM (1992) Large-scale synthesis of carbon nanotubes. Nature 358(6383):220–222CrossRefGoogle Scholar
  17. Fan HY, Reid SA (2003) Phase transformations in pulsed laser deposited nanocrystalline tin oxide thin films. Chem Mater 15(2):564–567. doi: 10.1021/Cm0208509 CrossRefGoogle Scholar
  18. Hao CC, Xiao F, Cui ZL (2008) Preparation and structure of carbon encapsulated copper nanoparticles. J Nanopart Res 10(1):47–51. doi: 10.1007/s11051-007-9218-6 CrossRefGoogle Scholar
  19. Hartanto AB, Ning X, Nakata Y, Okada T (2004) Growth mechanism of ZnO nanorods from nanoparticles formed in a laser ablation plume. Appl Phys A 78(3):299–301. doi: 10.1007/s00339-003-2286-2 CrossRefGoogle Scholar
  20. Hong KQ, Xie MH, Hu R, Wu HH (2007) Synthesizing tungsten oxide nanowires by a thermal evaporation method. Appl Phys Lett 90(17):173121. doi: 10.1063/1.2734175 CrossRefGoogle Scholar
  21. Huh MY, Kim SH, Ahn JP, Park JK, Kim BK (1999) Oxidation of nanophase tin particles. Nanostruct Mater 11(2):211–220CrossRefGoogle Scholar
  22. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58CrossRefGoogle Scholar
  23. Ionescu R, Hoel A, Granqvist CG, Llobet E, Heszler P (2005) Low-level detection of ethanol and H2S with temperature-modulated WO3 nanoparticle gas sensors. Sens Actuators B 104(1):132–139. doi: 10.1016/j.snb.2004.05.015 CrossRefGoogle Scholar
  24. Jang HD, Seong CM, Chang HK, Kim HC (2006) Synthesis and characterization of indium-tin oxide (ITO) nanoparticles. Curr Appl Phys 6(6):1044–1047. doi: 10.1016/j.cap.2005.07.016 CrossRefGoogle Scholar
  25. Joshi RK, Kruis FE (2006) Influence of Ag particle size on ethanol sensing of SnO1.8: Ag nanoparticle films: a method to develop parts per billion level gas sensors. Appl Phys Lett 89(15):153116. doi: 10.1063/1.2360245 CrossRefGoogle Scholar
  26. Joshi RK, Kruis FE, Dmitrieva O (2006) Gas sensing behavior of SnO1.8:Ag films composed of size-selected nanoparticles. J Nanopart Res 8(6):797–808. doi: 10.1007/s11051-005-9045-6 CrossRefGoogle Scholar
  27. Keskinen H, Tricoli A, Marjamaki M, Makela JM, Pratsinis SE (2009) Size-selected agglomerates of SnO2 nanoparticles as gas sensors. J Appl Phys 106(8):084316. doi: 10.1063/1.3212995 CrossRefGoogle Scholar
  28. Khakpash N, Simchi A, Kohi P (2009) Gas phase synthesis of SnOx nanoparticles and characterization. J Alloys Compd 470(1–2):289–293. doi: 10.1016/j.jallcom.2008.02.033 Google Scholar
  29. Kim YS, Ha SC, Kim K, Yang H, Choi SY, Kim YT, Park JT, Lee CH, Choi J, Paek J, Lee K (2005) Room-temperature semiconductor gas sensor based on nonstoichiometric tungsten oxide nanorod film. Appl Phys Lett 86(21):213105. doi: 10.1063/1.1929872 CrossRefGoogle Scholar
  30. Kim YS, Hwang IS, Kim SJ, Lee CY, Lee JH (2008) CuO nanowire gas sensors for air quality control in automotive cabin. Sens Actuators B 135(1):298–303. doi: 10.1016/j.snb.2008.08.026 CrossRefGoogle Scholar
  31. Kimura Y, Miura H, Tsukamoto K, Li CR, Maki T (2011) Interferometric in situ observation during nucleation and growth of WO3 nanocrystals in vapor phase. J Cryst Growth 316(1):196–200. doi: 10.1016/j.jcrysgro.2010.12.074 CrossRefGoogle Scholar
  32. Kiyonaga T, Akita T, Tada H (2009) Au nanoparticle electrocatalysis in a photoelectrochemical solar cell using CdS quantum dot-sensitized TiO2 photoelectrodes. Chem Commun 15:2011–2013. doi: 10.1039/B818825d CrossRefGoogle Scholar
  33. Lu B, Wang CS, Zhang YH (1997) Electron beam induced crystallization in Fe-doped SnO2 nanoparticles. Appl Phys Lett 70(6):717–719CrossRefGoogle Scholar
  34. Lu GH, Huebner KL, Ocola LE, Gajdardziska-Josifovska M, Chen JH (2006) Gas sensors based on tin oxide nanoparticles synthesized from a mini-arc plasma source. J Nanomater 1:1–7. doi: 10.1155/Jnm/2006/60828 Google Scholar
  35. Lu GH, Ocola LE, Chen JH (2009) Room-temperature gas sensing based on electron transfer between discrete tin oxide nanocrystals and multiwalled carbon nanotubes. Adv Mater 21(24):2487–2491. doi: 10.1002/adma.200803536 CrossRefGoogle Scholar
  36. Mahoney W, Andres RP (1995) Aerosol synthesis of nanoscale clusters using atmospheric arc evaporation. Mater Sci Eng A 204(1–2):160–164Google Scholar
  37. Mao S, Lu GH, Yu KH, Chen JH (2010) Specific biosensing using carbon nanotubes functionalized with gold nanoparticle-antibody conjugates. Carbon 48(2):479–486. doi: 10.1016/j.carbon.2009.09.065 CrossRefGoogle Scholar
  38. Meng D, Yamazaki T, Shen YB, Liu ZF, Kikuta T (2009) Preparation of WO3 nanoparticles and application to NO2 sensor. Appl Surf Sci 256(4):1050–1053. doi: 10.1016/j.apsusc.2009.05.075 CrossRefGoogle Scholar
  39. Mochida T, Kikuchi K, Kondo T, Ueno H, Matsuura Y (1995) Highly sensitive and selective H2 gas sensor from Rf-sputtered SnO2 thin-film. Sens Actuators B 25(1–3):433–437CrossRefGoogle Scholar
  40. Ono H, Iizuka S (2009) Growth of ZnO nanowires in hollow-type magnetron O2/Ar RF plasma. Thin Solid Films 518(3):1016–1019. doi: 10.1016/j.tsf.2009.07.176 CrossRefGoogle Scholar
  41. Panchapakesan B, DeVoe DL, Widmaier MR, Cavicchi R, Semancik S (2001) Nanoparticle engineering and control of tin oxide microstructures for chemical microsensor applications. Nanotechnology 12(3):336–349CrossRefGoogle Scholar
  42. Pimtong-Ngam Y, Jiemsirilers S, Supothina S (2007) Preparation of tungsten oxide-tin oxide nanocomposites and their ethylene sensing characteristics. Sens Actuators B 139(1–2):7–11. doi: 10.1016/j.sna.2006.10.032 Google Scholar
  43. Rella R, Spadavecchia J, Manera MG, Capone S, Taurino A, Martino M, Caricato AP, Tunno T (2007) Acetone and ethanol solid-state gas sensors based on TiO2 nanoparticles thin film deposited by matrix assisted pulsed laser evaporation. Sens Actuators B 127(2):426–431. doi: 10.1016/j.snb.2007.04.048 CrossRefGoogle Scholar
  44. Rellinghaus B, Lindackers D, Kockerling M, Roth P, Wassermann EF (2003) The process of particle formation in the flame synthesis of tin oxide nanoparticles. Phase Transit 76(4–5):347–354. doi: 10.1080/0141159021000051442 Google Scholar
  45. Shimizu Y, Kawaguchi K, Sasaki T, Koshizaki N (2009) Generation of room-temperature atmospheric H2/Ar microplasma jet driven with pulse-modulated ultrahigh frequency and its application to gold nanoparticle preparation. Appl Phys Lett 94(19):191504. doi: 10.1063/1.3129168 CrossRefGoogle Scholar
  46. Siciliano T, Tepore A, Micocci G, Serra A, Manno D, Filippo E (2008) WO3 gas sensors prepared by thermal oxidization of tungsten. Sens Actuators B 133(1):321–326. doi: 10.1016/j.snb.2008.02.028 CrossRefGoogle Scholar
  47. Simchi A, Ahmadi R, Reihani SMS, Mahdavi A (2007) Kinetics and mechanisms of nanoparticle formation and growth in vapor phase condensation process. Mater Design 28(3):850–856. doi: 10.1016/j.matdes.2005.10.017 CrossRefGoogle Scholar
  48. Strobel R, Pratsinis SE (2007) Flame aerosol synthesis of smart nanostructured materials. J Mater Chem 17(45):4743–4756. doi: 10.1039/B711652g CrossRefGoogle Scholar
  49. Tanaka M, Watanabe T (2008) Vaporization mechanism from Sn–Ag mixture by Ar-H-2 arc for nanoparticle preparation. Thin Solid Films 516(19):6645–6649. doi: 10.1016/j.tsf.2007.11.096 CrossRefGoogle Scholar
  50. Yang A, Tao XM, Pang GKH, Siu KGG (2008) Preparation of porous tin oxide nanobelts using the electrospinning technique. J Am Ceram Soc 91(1):257–262. doi: 10.1111/j.1551-2916.2007.02106.x CrossRefGoogle Scholar
  51. Yao K, Caruntu D, Cao BB, O’Connor CJ, Zhou WL (2010) Investigation of gas-sensing performance of SnO2 nanoparticles with different morphologies. IEEE Trans Nanotechnol 9(5):630–633. doi: 10.1109/Tnano.2010.2047728 CrossRefGoogle Scholar
  52. Yu K, Wu ZC, Zhao QR, Li BX, Xie Y (2008) High-temperature-stable Au@SnO2 sore/shell supported catalyst for CO oxidation. J Phys Chem C 112(7):2244–2247. doi: 10.1021/Jp711880e CrossRefGoogle Scholar
  53. Zhou J, Gong L, Deng SZ, Chen J, She JC, Xu NS, Yang RS, Wang ZL (2005) Growth and field-emission property of tungsten oxide nanotip arrays. Appl Phys Lett 87(22):223108. doi: 10.1063/1.236006 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Shumao Cui
    • 1
  • Eric C. Mattson
    • 2
  • Ganhua Lu
    • 1
  • Carol Hirschmugl
    • 2
  • Marija Gajdardziska-Josifovska
    • 2
  • Junhong Chen
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of Wisconsin-MilwaukeeMilwaukeeUSA
  2. 2.Department of PhysicsUniversity of Wisconsin-MilwaukeeMilwaukeeUSA

Personalised recommendations