Skip to main content
Log in

Formation of bamboo-shaped carbon nanotubes on carbon black in a fluidized bed

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

For the first time, bamboo-shaped multiwalled carbon nanotubes, having diameter of the order of 50 nm, have been grown on carbon black in a fluidized bed in bulk amount. The activation energy for the synthesis of the product was found out to be around 33 kJ/mol in the temperature range of 700−900 °C. The carbon nanotubes were separated from the carbon black by preferential oxidation of the later, the temperature of which was determined by thermogravimetry. The transmission electron microscopy revealed different features of the nanotubes such as “Y” junction, bend, and catalyst filling inside the nanotubes. Small angle neutron scattering was performed on the nanotubes synthesized at different temperatures. The data were fitted into a suitable model in order to find out the average diameter, which decreases with increase in synthesis temperature. The Monte Carlo simulation predicts the same behavior. Based on the above observations, a possible growth mechanism has been predicted. The oscillation in carbon saturation value inside the catalyst in the fluidized bed has been indicated as the responsible factor for the bamboo-shaped structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aschroft NW, Lekner J (1966) Structure and resistivity of liquid metals. J Phys Rev 145:83–90

    Article  Google Scholar 

  • Baker RTK (1989) Catalytic growth of carbon filaments. Carbon 27:315–323

    Article  CAS  Google Scholar 

  • Baker RTK, Barber MA, Harris PS, Feates FS, Waite RJ (1972) Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J Catal 26:51–62

    Article  CAS  Google Scholar 

  • Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297:781–787

    Article  Google Scholar 

  • Beaucage G (1995) Approximations leading to a unified exponential/power-law approach to small-angle scattering. J Appl Cryst 28:717–728

    Article  CAS  Google Scholar 

  • Bonard JM, Kind H, Stockli T, Nilsson LO (2001) Field emission from carbon nanotubes: the first five years. Solid State Electron 45:893–914

    Article  CAS  Google Scholar 

  • Charlier JC, Terrones M, Banhart F, Grobert N, Terrones H, Ajayan PM (2003) Experimental observation and quantum modeling of electron irradiation on single-wall carbon nanotubes. IEEE Trans Nanotechnol 2:349–354

    Article  Google Scholar 

  • Dasgupta K, Veugopalan R, Sathiyamoorthy D (2007) The production of high purity carbon nanotubes with high yield using cobalt formate catalyst on carbon black. Mater Lett 61:4496–4499

    Article  CAS  Google Scholar 

  • Dasgupta K, Veugopalan R, Dey GK, Sathiyamoorthy D (2008) Novel catalytic route to bulk production of high purity carbon nanotubes. J Nanopart Res 10:69–76

    Article  CAS  Google Scholar 

  • Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386:377–379

    Article  CAS  Google Scholar 

  • Fan X, Buczko R, Puretzky AA, Geohegan DB, Howe JY, Pantelides ST, Pennycook SJ (2003) Nucleation of single-walled carbon nanotubes. Phys Rev Lett 90:145501-1–145501-4

    Article  Google Scholar 

  • Fan JP, Zhang DM, Zhao DQ, Zhang G, Wu MS, Wei F et al (2006) Toughening and reinforcing alumina matrix composite with single-wall carbon nanotubes. Appl Phys Lett 89:121910

    Article  Google Scholar 

  • Feigin LA, Svergun DI (1987) Structure analysis by small-angle X-ray and neutron scattering. Plenum Press, New York

    Google Scholar 

  • Iijima S, Toshinari P, Ando Y (1992) Pentagons, heptagons and negative curvature in graphite microtubule growth. Nature 356:776–778

    Article  CAS  Google Scholar 

  • Krishnan A, Dujardin E, Treacy MMJ, Hugdahl J, Lynum S, Ebbesen TW (1997) Graphitic cones and the nucleation of curved carbon surfaces. Nature 388:451–454

    Article  CAS  Google Scholar 

  • Lenosky T, Gonze X, Teter M, Elser V (1992) Energetics of negatively curved graphitic carbon. Nature 355:333–335

    Article  CAS  Google Scholar 

  • Mazumder S, Sen D, Saravanan T, Vijayaraghavan PR (2001) Performance and calibration of the newly installed medium resolution double crystal based small angle neutron scattering instrument at Trombay. J Neutron Res 9:39–57

    Article  CAS  Google Scholar 

  • Morancais A, Caussat B, Kihn Y, Kalck P, Plee D, Gaillard P, Bernard D, Serp P (2007) A parametric study of the large scale production of multi-walled carbon nanotubes by fluidized bed catalytic chemical vapor deposition. Carbon 45:624–635

    Article  CAS  Google Scholar 

  • Nagi P, Ehlich R, Biró LP, Gyulail J (2000) Y branching of single walled carbon nanotubes. Appl Phys A 70:481–483

    Article  Google Scholar 

  • Philippe R, Morancais A, Corrias M, Caussat B, Kihn Y, Kalck P, Plee D, Gaillard P, Bernard D, Serp P (2007) Catalytic production of carbon nanotubes by fluidized-bed CVD. Chem Vapor Depos 13:447–457

    Article  CAS  Google Scholar 

  • Qian W, Wei F, Wang Z, Liu T, Yu H, Luo G, Xiang L (2003) Production of carbon nanotubes in a packed bed and a fluidized bed. AIChE J 49:619–625

    Article  CAS  Google Scholar 

  • Sinnott SB, Andrews R, Qian D, Rao AM, Mao Z, Dickey EC, Derbyshire F (1999) Model of carbon nanotube growth through chemical vapor deposition. Chem Phys Lett 315:25–30

    Article  CAS  Google Scholar 

  • Tans SJ, Devoret MH, Dai HJ, Thess A, Smalley RE, Geerligs LJ, Dekker C (1997) Individual single-wall carbon nanotubes as quantum wires. Nature 386:474–477

    Article  CAS  Google Scholar 

  • Tsukagoshi K, Yoneya N, Uryu S (2002) Carbon nanotube devices for nanoelectronics. Phys B 323:107–114

    Article  CAS  Google Scholar 

  • Wang Y, Wei F, Luo GH, Yu H, Gu GS (2002) The large-scale production of carbon nanotubes in a nano-agglomerate fluidized-bed reactor. Chem Phys Lett 364:568–572

    Article  CAS  Google Scholar 

  • Zhou D, Seraphin S (1995) Complex branching phenomena in the growth of CNTs. Chem Phys Lett 238:286–289

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. B. Joshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dasgupta, K., Sen, D., Mazumdar, T. et al. Formation of bamboo-shaped carbon nanotubes on carbon black in a fluidized bed. J Nanopart Res 14, 728 (2012). https://doi.org/10.1007/s11051-012-0728-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0728-5

Keywords

Navigation