Advertisement

Formation of bamboo-shaped carbon nanotubes on carbon black in a fluidized bed

  • Kinshuk Dasgupta
  • D. Sen
  • T. Mazumdar
  • R. K. Lenka
  • R. Tewari
  • S. Mazumder
  • J. B. Joshi
  • S. Banerjee
Research Paper

Abstract

For the first time, bamboo-shaped multiwalled carbon nanotubes, having diameter of the order of 50 nm, have been grown on carbon black in a fluidized bed in bulk amount. The activation energy for the synthesis of the product was found out to be around 33 kJ/mol in the temperature range of 700−900 °C. The carbon nanotubes were separated from the carbon black by preferential oxidation of the later, the temperature of which was determined by thermogravimetry. The transmission electron microscopy revealed different features of the nanotubes such as “Y” junction, bend, and catalyst filling inside the nanotubes. Small angle neutron scattering was performed on the nanotubes synthesized at different temperatures. The data were fitted into a suitable model in order to find out the average diameter, which decreases with increase in synthesis temperature. The Monte Carlo simulation predicts the same behavior. Based on the above observations, a possible growth mechanism has been predicted. The oscillation in carbon saturation value inside the catalyst in the fluidized bed has been indicated as the responsible factor for the bamboo-shaped structure.

Keywords

Carbon nanotube Fluidized bed Electron microscopy Small angle neutron scattering Modeling and simulation 

References

  1. Aschroft NW, Lekner J (1966) Structure and resistivity of liquid metals. J Phys Rev 145:83–90CrossRefGoogle Scholar
  2. Baker RTK (1989) Catalytic growth of carbon filaments. Carbon 27:315–323CrossRefGoogle Scholar
  3. Baker RTK, Barber MA, Harris PS, Feates FS, Waite RJ (1972) Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J Catal 26:51–62CrossRefGoogle Scholar
  4. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297:781–787CrossRefGoogle Scholar
  5. Beaucage G (1995) Approximations leading to a unified exponential/power-law approach to small-angle scattering. J Appl Cryst 28:717–728CrossRefGoogle Scholar
  6. Bonard JM, Kind H, Stockli T, Nilsson LO (2001) Field emission from carbon nanotubes: the first five years. Solid State Electron 45:893–914CrossRefGoogle Scholar
  7. Charlier JC, Terrones M, Banhart F, Grobert N, Terrones H, Ajayan PM (2003) Experimental observation and quantum modeling of electron irradiation on single-wall carbon nanotubes. IEEE Trans Nanotechnol 2:349–354CrossRefGoogle Scholar
  8. Dasgupta K, Veugopalan R, Sathiyamoorthy D (2007) The production of high purity carbon nanotubes with high yield using cobalt formate catalyst on carbon black. Mater Lett 61:4496–4499CrossRefGoogle Scholar
  9. Dasgupta K, Veugopalan R, Dey GK, Sathiyamoorthy D (2008) Novel catalytic route to bulk production of high purity carbon nanotubes. J Nanopart Res 10:69–76CrossRefGoogle Scholar
  10. Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386:377–379CrossRefGoogle Scholar
  11. Fan X, Buczko R, Puretzky AA, Geohegan DB, Howe JY, Pantelides ST, Pennycook SJ (2003) Nucleation of single-walled carbon nanotubes. Phys Rev Lett 90:145501-1–145501-4CrossRefGoogle Scholar
  12. Fan JP, Zhang DM, Zhao DQ, Zhang G, Wu MS, Wei F et al (2006) Toughening and reinforcing alumina matrix composite with single-wall carbon nanotubes. Appl Phys Lett 89:121910CrossRefGoogle Scholar
  13. Feigin LA, Svergun DI (1987) Structure analysis by small-angle X-ray and neutron scattering. Plenum Press, New YorkGoogle Scholar
  14. Iijima S, Toshinari P, Ando Y (1992) Pentagons, heptagons and negative curvature in graphite microtubule growth. Nature 356:776–778CrossRefGoogle Scholar
  15. Krishnan A, Dujardin E, Treacy MMJ, Hugdahl J, Lynum S, Ebbesen TW (1997) Graphitic cones and the nucleation of curved carbon surfaces. Nature 388:451–454CrossRefGoogle Scholar
  16. Lenosky T, Gonze X, Teter M, Elser V (1992) Energetics of negatively curved graphitic carbon. Nature 355:333–335CrossRefGoogle Scholar
  17. Mazumder S, Sen D, Saravanan T, Vijayaraghavan PR (2001) Performance and calibration of the newly installed medium resolution double crystal based small angle neutron scattering instrument at Trombay. J Neutron Res 9:39–57CrossRefGoogle Scholar
  18. Morancais A, Caussat B, Kihn Y, Kalck P, Plee D, Gaillard P, Bernard D, Serp P (2007) A parametric study of the large scale production of multi-walled carbon nanotubes by fluidized bed catalytic chemical vapor deposition. Carbon 45:624–635CrossRefGoogle Scholar
  19. Nagi P, Ehlich R, Biró LP, Gyulail J (2000) Y branching of single walled carbon nanotubes. Appl Phys A 70:481–483CrossRefGoogle Scholar
  20. Philippe R, Morancais A, Corrias M, Caussat B, Kihn Y, Kalck P, Plee D, Gaillard P, Bernard D, Serp P (2007) Catalytic production of carbon nanotubes by fluidized-bed CVD. Chem Vapor Depos 13:447–457CrossRefGoogle Scholar
  21. Qian W, Wei F, Wang Z, Liu T, Yu H, Luo G, Xiang L (2003) Production of carbon nanotubes in a packed bed and a fluidized bed. AIChE J 49:619–625CrossRefGoogle Scholar
  22. Sinnott SB, Andrews R, Qian D, Rao AM, Mao Z, Dickey EC, Derbyshire F (1999) Model of carbon nanotube growth through chemical vapor deposition. Chem Phys Lett 315:25–30CrossRefGoogle Scholar
  23. Tans SJ, Devoret MH, Dai HJ, Thess A, Smalley RE, Geerligs LJ, Dekker C (1997) Individual single-wall carbon nanotubes as quantum wires. Nature 386:474–477CrossRefGoogle Scholar
  24. Tsukagoshi K, Yoneya N, Uryu S (2002) Carbon nanotube devices for nanoelectronics. Phys B 323:107–114CrossRefGoogle Scholar
  25. Wang Y, Wei F, Luo GH, Yu H, Gu GS (2002) The large-scale production of carbon nanotubes in a nano-agglomerate fluidized-bed reactor. Chem Phys Lett 364:568–572CrossRefGoogle Scholar
  26. Zhou D, Seraphin S (1995) Complex branching phenomena in the growth of CNTs. Chem Phys Lett 238:286–289CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Kinshuk Dasgupta
    • 1
    • 2
  • D. Sen
    • 3
  • T. Mazumdar
    • 4
  • R. K. Lenka
    • 1
  • R. Tewari
    • 1
  • S. Mazumder
    • 3
  • J. B. Joshi
    • 2
    • 5
  • S. Banerjee
    • 5
    • 6
  1. 1.Materials GroupBhabha Atomic Research CentreMumbaiIndia
  2. 2.Department of Chemical EngineeringInstitute of Chemical TechnologyMumbaiIndia
  3. 3.Solid State Physics DivisionBhabha Atomic Research CentreMumbaiIndia
  4. 4.Research Reactor Services DivisionBhabha Atomic Research CentreMumbaiIndia
  5. 5.Homi Bhabha National InstituteMumbaiIndia
  6. 6.Department of Atomic EnergyMumbaiIndia

Personalised recommendations