Polymer-supported metals and metal oxide nanoparticles: synthesis, characterization, and applications

  • Sudipta Sarkar
  • E. Guibal
  • F. Quignard
  • A. K. SenGupta


Metal and metal oxide nanoparticles exhibit unique properties in regard to sorption behaviors, magnetic activity, chemical reduction, ligand sequestration among others. To this end, attempts are being continuously made to take advantage of them in multitude of applications including separation, catalysis, environmental remediation, sensing, biomedical applications and others. However, metal and metal oxide nanoparticles lack chemical stability and mechanical strength. They exhibit extremely high pressure drop or head loss in fixed-bed column operation and are not suitable for any flow-through systems. Also, nanoparticles tend to aggregate; this phenomenon reduces their high surface area to volume ratio and subsequently reduces effectiveness. By appropriately dispersing metal and metal oxide nanoparticles into synthetic and naturally occurring polymers, many of the shortcomings can be overcome without compromising the parent properties of the nanoparticles. Furthermore, the appropriate choice of the polymer host with specific functional groups may even lead to the enhancement of the properties of nanoparticles. The synthesis of hybrid materials involves two broad pathways: dispersing the nanoparticles (i) within pre-formed or commercially available polymers; and (ii) during the polymerization process. This review presents a broad coverage of nanoparticles and polymeric/biopolymeric host materials and the resulting properties of the hybrid composites. In addition, the review discusses the role of the Donnan membrane effect exerted by the host functionalized polymer in harnessing the desirable properties of metal and metal oxide nanoparticles for intended applications.


Metal nanoparticles Metal oxide nanoparticles Ion exchangers Biopolymers Synthetic polymers Entrapment Sorbents Supported catalysts 


  1. Adhikari B, Majumdar S (2004) Polymers in sensor applications. Prog Polym Sci 29(7):699–766CrossRefGoogle Scholar
  2. Akamatsu K, Adachi S, Tsuruoka T, Ikeda S, Tomita S, Nawafune H (2008) Nanocomposite polymeric microspheres containing Ni nanoparticles with controlled microstructures. Chem Materer 20(9):3042–3047CrossRefGoogle Scholar
  3. Akcora P, Zhang X, Varughese B, Briber RM, Kofinas P (2005) Structural and magnetic characterization of norbornene-deuterated norbornene dicarboxylic acid diblock copolymers doped with iron oxide nanoparticles. Polymer 46(14):5194–5201CrossRefGoogle Scholar
  4. Astruc D, Lu F, Aranzaes JR (2005) Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew Chem Int 44:7852–7872. doi: 10.1002/anie.200500766 CrossRefGoogle Scholar
  5. Baker C, Ismat Shah S, Hasanain SK (2004) Magnetic behavior of iron and iron-oxide nanoparticle/polymer composites. J Magn Magn Mater 280(2–3):412–418CrossRefGoogle Scholar
  6. Banerjee SS, Chen DH (2007) Fast removal of copper ions by gum arabic modified magnetic nano-adsorbent. J Hazard Mater 147(3):792–799CrossRefGoogle Scholar
  7. Blaney LM, Cinar S, SenGupta AK (2007) Hybrid anion exchanger for trace phosphate removal from water and wastewater. Water Res 41(7):1603–1613CrossRefGoogle Scholar
  8. Boissiere M, Tourrette A, Devoisselle JM, Di Renzo F, Quignard F (2006) Pillaring effects in macroporous carrageenan-silica composite microspheres. J Colloid Interface Sci 294(1):109–116CrossRefGoogle Scholar
  9. Bronstein LM, Platonova OA, Yakunin AN, Yanovskaya IM, Valetsky PM, Dembo AT, Makhaeva EE, Mironov AV, Khokhlov AR (1998) Complexes of polyelectrolyte gels with oppositely charged surfactants: interaction with metal ions and metal nanoparticle formation. Langmuir 14(2):252–259CrossRefGoogle Scholar
  10. Bronstein LM, Chernyshov DM, Timofeeva GI, Dubrovina LV, Valetsky PM, Khokhlov AR (2000) The hybrids of polystyrene-block-poly(ethylene oxide) micelles and sodium dodecyl sulfate in aqueous solutions: interaction with Rh ions and Rh nanoparticle formation. J Colloid Interface Sci 230(1):140–149CrossRefGoogle Scholar
  11. Brown E, Rehse SJ (2007) Laser-induced breakdown spectroscopy of gamma-Fe2O3 nanoparticles in a biocompatible alginate matrix. Spectrochim Acta Part B 62(12):1475–1483CrossRefGoogle Scholar
  12. Céspedes F, Martínez-Fabregas E, Alegret S (1996) New materials for electrochemical sensing I. Rigid conducting composites. Trends Anal Chem 15:296CrossRefGoogle Scholar
  13. Chakraborty S, Retna Raj C (2009) Pt Nanoparticle-based highly sensitive platform for the enzyme-free amperometric sensing of H2O2. Biosens Bioelectron 24(11):3264–3268CrossRefGoogle Scholar
  14. Chatterjee U, Jewrajka SK (2007) Synthesis of block copolymer-stabilized Au-Ag alloy nanoparticles and fabrication of poly(methyl methacrylate)/Au-Ag nanocomposite film. J Colloid Interface Sci 313(2):717–723CrossRefGoogle Scholar
  15. Chico B, Camacho C, Perez M, Longo MA, Sanroman MA, Pingarron JM, Villalonga R (2009) Polyelectrostatic immobilization of gold nanoparticles-modified peroxidase on alginate-coated gold electrode for mediatorless biosensor construction. J Electroanal Chem 629(1–2):126–132Google Scholar
  16. Cumbal L, SenGupta AK (2005a) Arsenic removal using polymer-supported hydrated iron(III) oxide nanoparticles: role of Donnan membrane effect. Environ Sci Technol 39(17):6508–6515CrossRefGoogle Scholar
  17. Cumbal LH, SenGupta AK (2005b) Preparation and characterization of magnetically active dual-zone sorbent. Ind Eng Chem Res 44(3):600–605CrossRefGoogle Scholar
  18. Cumbal L, Greenleaf J, Leun D, SenGupta AK (2003) Polymer supported inorganic nanoparticles: characterization and environmental applications. React Funct Polym 54(1–3):167–180CrossRefGoogle Scholar
  19. De D, Mandal S, Bhattacharya J, Ram S, Roy S (2009) Iron oxide nanoparticle-assisted arsenic removal from aqueous system. J Environ Sci Health Part A-Toxic/Hazard Subst Environ Eng 44(2):155–162CrossRefGoogle Scholar
  20. DeMarco MJ, SenGupta AK, Greenleaf JE (2003) Arsenic removal using a polymeric/inorganic hybrid sorbent. Water Res 37(1):164–176CrossRefGoogle Scholar
  21. Di Renzo F, Valentin R, Boissiere M, Tourrette A, Sparapano G, Molvinger K, Devoisselle JM, Gerardin C, Quignard F (2005) Hierarchical macroporosity induced by constrained syneresis in core-shell polysaccharide composites. Chem Mater 17(18):4693–4699CrossRefGoogle Scholar
  22. Djelad A, Morsli A, Robitzer M, Bengueddach A, Di Renzo F, Quignard R (2008) Stabilisation of the secondary structure of chitosan gels during the preparation of composites. Macromol Symp 273:103–108CrossRefGoogle Scholar
  23. Donnan FG (1995) Theory of membrane equilibria and membrane potentials in the presence of non-dialysing electrolytes. A contribution to physical-chemical physiology. J Membr Sci 100:45–55CrossRefGoogle Scholar
  24. dos Santos DS, Goulet PJG, Pieczonka NPW, Oliveira ON, Aroca RF (2004) Gold nanoparticle embedded, self-sustained chitosan films as substrates for surface-enhanced Raman scattering. Langmuir 20(23):10273–10277CrossRefGoogle Scholar
  25. El Kadib A, Molvinger K, Guimon C, Quignard F, Brunel D (2008) Design of stable nanoporous hybrid chitosan/titania as cooperative bifunctional catalysts. Chem Mater 20(6):2198–2204CrossRefGoogle Scholar
  26. Endoa T, Yanagida Y, Hatsuzawa T (2007) Colorimetric detection of volatile organic compounds using a colloidal crystal-based chemical sensor for environmental applications. Sens Actuators B 125:589–595CrossRefGoogle Scholar
  27. Escudero C, Fiol N, Villaescusa I, Bollinger JC (2009) Arsenic removal by a waste metal (hydr)oxide entrapped into calcium alginate beads. J Hazard Mater 164(2–3):533–541CrossRefGoogle Scholar
  28. Farah AA, Alvarez-Puebla RA, Fenniri H (2008) Chemically stable silver nanoparticle-crosslinked polymer microspheres. J Colloid Interface Sci 319(2):572–576CrossRefGoogle Scholar
  29. Feng D, Wang F, Chen ZL (2009) Electrochemical glucose sensor based on one-step construction of gold nanoparticle-chitosan composite film. Sens Actuators B 138(2):539–544CrossRefGoogle Scholar
  30. Foxx D, Kalu EE (2007) Amperometric biosensor based on thermally activated polymer-stabilized metal nanoparticles. Electrochem Commun 9(4):584–590CrossRefGoogle Scholar
  31. Grate JW, Nelson DA, Skaggs R (2003) Sorptive behavior of monolayer-protected gold nanoparticle films: implications for chemical vapor sensing. Anal Chem 75(8):1868–1879CrossRefGoogle Scholar
  32. Greenleaf JE, Lin JC, SenGupta AK (2006) Two novel applications of ion exchange fibers: arsenic removal and chemical-free softening of hard water. Environ Prog 25(4):300–311CrossRefGoogle Scholar
  33. Greig JA (2000) Ion exchange at the millennium: proceedings of IEX-2000. Imperial College Press, LondonGoogle Scholar
  34. Guibal E (2004) Interactions of metal ions with chitosan-based sorbents: a review. Sep Purif Technol 38(1):43–74CrossRefGoogle Scholar
  35. Guibal E (2005) Heterogeneous catalysis on chitosan-based materials: a review. Prog Polym Sci 30(1):71–109CrossRefGoogle Scholar
  36. Guibal E, Vincent T (2004) Chitosan-supported palladium catalyst. IV. Influence of temperature on nitrophenol degradation and thermodynamic parameters. J Environ Manage 71(1):15–23CrossRefGoogle Scholar
  37. Guibal E, Vincent T, Spinelli S (2005) Environmental application of chitosan-supported catalysts: catalytic hollow fibers for the degradation of phenolic derivatives. Sep Sci Technol 40(1–3):633–657CrossRefGoogle Scholar
  38. Guibal E, Vincent T, Blondet FP (2007) Biopolymers as supports for heterogeneous catalysis: focus on chitosan, a promising aminopolysaccharide. In: SenGupta AK (ed) Ion exchange and solvent extraction—a series of advances, vol 18. CRC Press-Taylor & Francis Group, Boca Raton, pp 151–292Google Scholar
  39. Guibal E, Vincent T, Jouannin C (2009) Immobilization of extractants in biopolymer capsules for the synthesis of new resins: a focus on the encapsulation of tetraalkyl phosphonium ionic liquids. J Mater Chem 19:8515–8527CrossRefGoogle Scholar
  40. Guo S, Wang E (2007) Synthesis and electrochemical applications of gold nanoparticles. Anal Chim Acta 598(2):181–192CrossRefGoogle Scholar
  41. Guo Z, Lee SE, Kim H, Park S, Hahn HT, Karki AB, Young DP (2009) Fabrication, characterization and microwave properties of polyurethane nanocomposites reinforced with iron oxide and barium titanate nanoparticles. Acta Mater 57(1):267–277CrossRefGoogle Scholar
  42. He F, Zhao D (2005) Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ Sci Technol 39(9):3314–3320CrossRefGoogle Scholar
  43. He XL, Yuan R, Chai YQ, Shi YT (2008) A sensitive amperometric immunosensor for carcinoembryonic antigen detection with porous nanogold film and nano-Au/chitosan composite as immobilization matrix. J Biochem Biophys Methods 70(6):823–829CrossRefGoogle Scholar
  44. Helfferich FG (1962) Ion exchange. McGraw-Hill, New YorkGoogle Scholar
  45. Hrapovic S, Liu Y, Male KB, Luong JHT (2004) Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal Chem 76(4):1083–1088CrossRefGoogle Scholar
  46. Hristovski K, Westerhoff P, Möller T, Sylvester P, Condit W, Mash H (2008) Simultaneous removal of perchlorate and arsenate by ion-exchange media modified with nanostructured iron (hydr)oxide. J Hazard Mater 152(1):397–406CrossRefGoogle Scholar
  47. Hu J, Chen GH, Lo IMC (2006) Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: performance and mechanisms. J Environ Eng-ASCE 132(7):709–715CrossRefGoogle Scholar
  48. Kaushik A, Khan R, Solanki PR, Pandey P, Alam J, Ahmad S, Malhotra BD (2008) Iron oxide nanoparticles-chitosan composite based glucose biosensor. Biosens Bioelectron 24(4):676–683CrossRefGoogle Scholar
  49. Khlebtsov B, Zharov V, Melnikov A, Tuchin V, Khlebtsov N (2006) Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters. Nanotechnol 17(20):5167–5179CrossRefGoogle Scholar
  50. Kong H, Jang JM (2008) Synthesis and antimicrobial properties of novel silver/polyrhodanine nanofibers. Langmuir 24(5):2051–2056CrossRefGoogle Scholar
  51. Krajangpan S, Bermudez JJE, Bezbaruah AN, Chisholm BJ, Khan E (2008) Nitrate removal by entrapped zero-valent iron nanoparticles in calcium alginate. Water Sci Technol 58(11):2215–2222CrossRefGoogle Scholar
  52. Laudenslager MJ, Schiffman JD, Schauer CL (2008) Carboxymethyl chitosan as a matrix material for platinum, gold, and silver nanoparticles. Biomacromolecules 9(10):2682–2685CrossRefGoogle Scholar
  53. Lee S, Perez-Luna VH (2005) Dextran-gold nanoparticle hybrid material for biomolecule immobilization and detection. Anal Chem 77(22):7204–7211CrossRefGoogle Scholar
  54. Leun D, SenGupta AK (2000) Preparation and characterization of magnetically active polymeric particles (MAPPs) for complex environmental separations. Environ Sci Technol 34(15):3276–3282CrossRefGoogle Scholar
  55. Li Y, Lu QH, Qian XF, Zhu ZK, Yin J (2004) Preparation of surface bound silver nanoparticles on polyimide by surface modification method and its application on electroless metal deposition. Appl Surf Sci 233(1–4):299–306CrossRefGoogle Scholar
  56. Li DJ, Dunlap JR, Zhao B (2008) Thermosensitive water-dispersible hairy particle-supported Pd nanoparticles for catalysis of hydrogenation in an aqueous/organic biphasic system. Langmuir 24(11):5911–5918CrossRefGoogle Scholar
  57. Lim SF, Zheng YM, Zou SW, Chen JP (2008) Characterization of copper adsorption onto an alginate encapsulated magnetic sorbent by a combined FT-IR, XPS and mathematical modeling study. Environ Sci Technol 42(7):2551–2556CrossRefGoogle Scholar
  58. Lin MS, Leu HJ (2005) A Fe3O4-based chemical sensor for cathodic determination of hydrogen peroxide. Electroanalysis 17(22):2068–2073CrossRefGoogle Scholar
  59. Liu YS, Chen SM, Zhong L, Wu GZ (2009) Preparation of high-stable silver nanoparticle dispersion by using sodium alginate as a stabilizer under gamma radiation. Radiat Phys chem 78(4):251–255CrossRefGoogle Scholar
  60. Loh KS, Lee Y, Musa A, Salmah A, Zamri I (2008) Use of Fe3O4 nanoparticles for enhancement of biosensor response to the herbicide 2,4-dichlorophenoxyacetic acid. Sensors 8(9):5775–5791CrossRefGoogle Scholar
  61. Luo X, Morrin A, Killard A, Smyth M (2006) Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 18:319–326. doi: 10.1002/elan.200503415 CrossRefGoogle Scholar
  62. Luong ND, Lee Y, Nam JD (2008) Highly-loaded silver nanoparticles in ultrafine cellulose acetate nanofibrillar aerogel. Eur Polym J 44(10):3116–3121CrossRefGoogle Scholar
  63. Ma W, Ya FQ, Han M, Wang R (2007) Characteristics of equilibrium, kinetics studies for adsorption of fluoride on magnetic-chitosan particle. J Hazard Mater 143(1–2):296–302CrossRefGoogle Scholar
  64. Ma HL, Xu YF, Qi XR, Maitani Y, Nagai T (2008) Superparamagnetic iron oxide nanoparticles stabilized by alginate: pharmacokinetics, tissue distribution, and applications in detecting liver cancers. Int J Pharm 354(1–2):217–226CrossRefGoogle Scholar
  65. Macanas J, Ruiz P, Alonso A, Munoz M, Muraviev DN (2011) Ion exchange-assisted synthesis of polymer stabilized metal nanoparticles. In: SenGupta AK (ed) Ion exchange and solvent extraction: a series of advances, vol 20. CRC Press-Taylor & Francis Group, Boca Raton, pp 1–43CrossRefGoogle Scholar
  66. Mallick K, Witcomb MJ, Scurrell MS (2006) In situ synthesis of copper nanoparticles and poly(o-toluidine): a metal-polymer composite material. Eur Polym J 42(3):670–675CrossRefGoogle Scholar
  67. Mallick K, Mondal K, Witcomb M, Deshmukh A, Scurrell M (2008) Catalytic activity of a soft composite material: nanoparticle location-activity relationship. Mater Sci Eng B 150(1):43–49CrossRefGoogle Scholar
  68. Manju GN, Anirudhan TS (2000) Batch lead and cadmium ions binding and exchange properties of polymer-coated hydrous iron(III) oxide. J Sci Ind Res 59(2):144–152Google Scholar
  69. Manju GN, Krishnan KA, Vinod VP, Anirudhan TS (2002) An investigation into the sorption of heavy metals from wastewaters by polyacrylamide-grafted iron(III) oxide. J Hazard Mater 91(1–3):221–238CrossRefGoogle Scholar
  70. Mathiyarasu J, Senthilkumar S, Phani KLN, Yegnaraman V (2006) In PEDOT-Au nanocomposite films for electrochemical sensing of dopamine and uric acid, New Delhi, INDIA, Mar 16–18. American Scientific Publishers, New Delhi, pp 2206–2210Google Scholar
  71. Miehr R, Tratnyek PG, Bandstra JZ, Scherer MM, Alowitz M, Bylaska EJ (2004) The diversity of contaminant reduction reactions by zero-valent iron: role of the reductate. Environ Sci Technol 38:139–147CrossRefGoogle Scholar
  72. Min JH, Hering JG (1998) Arsenate sorption by Fe(III)-doped alginate gels. Water Res 32(5):1544–1552CrossRefGoogle Scholar
  73. Möller T, Sylvester P (2008) Effect of sililca and pH on arsenic uptake by resin/iron oxide hybrid media. Water Res 42(6–7):1760–1766CrossRefGoogle Scholar
  74. Molvinger K, Quignard F, Brunel D, Boissiere M, Devoisselle JM (2004) Porous chitosan-silica hybrid microspheres as a potential catalyst. Chem Mater 16(17):3367–3372CrossRefGoogle Scholar
  75. Monticelli O, Russo S, Campagna R, Voit B (2005) Preparation and characterisation of blends based on polyamide 6 and hyperbranched aramids as palladium nanoparticle supports. Polymer 46:3597–3606CrossRefGoogle Scholar
  76. Muraviev DN, Macanas J, Parrondo J, Munoz M, Alonso A, Alegret S, Ortueta M, Mijangos F (2007) Cation-exchange membrane as nanoreactor: intermatrix synthesis of platinum-copper core-shell nanoparticles. React Funct Polym 67(12):1612–1621CrossRefGoogle Scholar
  77. Murugadoss A, Chattopadhyay A (2008) A ‘green’ chitosan-silver nanoparticle composite as a heterogeneous as well as micro-heterogeneous catalyst. Nanotechnology 19(1):1–9CrossRefGoogle Scholar
  78. Niembro S, Shafir A, Vallribera A, Alibes R (2008) Palladium nanoparticles supported on an organic–inorganic fluorinated hybrid material: application to microwave-based heck reaction. Org Lett 10:3215–3218CrossRefGoogle Scholar
  79. Nowack B (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5CrossRefGoogle Scholar
  80. Ozkaraoglu E, Tunc I, Suzer S (2009) Preparation of Au and Au-Pt nanoparticles within PMMA matrix using UV and X-ray irradiation. Polymer 50(2):462–466CrossRefGoogle Scholar
  81. Peirano Blondet F, Vincent T, Guibal E (2008) Hydrogenation of nitrotoluene using palladium supported on chitosan hollow fiber: catalyst characterization and influence of operative parameters studied by experimental design methodology. Int J Biol Macromol 43(1):69–78CrossRefGoogle Scholar
  82. Peirano F, Vincent T, Quignard F, Robitzer M, Guibal E (2009) Palladium supported on chitosan hollow fiber for nitrotoluene hydrogenation. J Membr Sci 329(1–2):30–45CrossRefGoogle Scholar
  83. Ponder SM, Darab JC, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zerovalent iron. Environ Sci Technol 34:2564–2569CrossRefGoogle Scholar
  84. Pradeep T, Anshup (2009) Noble metal nanoparticles for water purification: a critical review. Thin Solid Films 517(24):6441–6778CrossRefGoogle Scholar
  85. Praig VG, McIlwee H, Schauer CL, Boukherroub R, Szunerits S (2009) Localized surface plasmon resonance of gold nanoparticle-modified chitosan films for heavy-metal ions sensing. J Nanosci Nanotechnol 9(1):350–357CrossRefGoogle Scholar
  86. Puttamraju P, SenGupta AK (2006) Evidence of tunable on-off sorption behaviors of metal oxide nanoparticles: role of ion exchanger support. Ind Eng Chem Res 45(22):7737–7742CrossRefGoogle Scholar
  87. Quignard F, Cot D, Di Renzo F, Gerardin C (2006) Core-shell copper hydroxide-polysaccharide composites with hierarchical macroporosity. Prog Solid State Chem 34(2–4):161–169CrossRefGoogle Scholar
  88. Quignard F, Valentin R, Di Renzo F (2008) Aerogel materials from marine polysaccharides. New J Chem 32(8):1300–1310CrossRefGoogle Scholar
  89. Rao CNR, Müller A, Cheetham AK (2004) Chemistry of nanomaterials: synthesis, properties and applications. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  90. Robitzer M, David L, Rochas C, Di Renzo F, Quignard F (2004) Nanostructure of calcium alginate aerogels obtained from multistep solvent exchange route. Langmuir 24(21):12547–12552CrossRefGoogle Scholar
  91. Rozenberg BA, Tenne R (2008) Polymer-assisted fabrication of nanoparticles and nanocomposites. Prog Polym Sci 33(1):40–112CrossRefGoogle Scholar
  92. Sarkar S, Gupta A, Biswas RK, Deb AK, Greenleaf JE, SenGupta AK (2005) Well-head arsenic removal units in remote villages of Indian subcontinent: field results and performance evaluation. Water Res 39(10):2196–2206CrossRefGoogle Scholar
  93. Sarkar S, Blaney LM, Gupta A, Ghosh D, SenGupta AK (2007) Use of ArsenX(np), a hybrid anion exchanger, for arsenic removal in remote villages in the Indian subcontinent. React Funct Polym 67(12):1599–1611CrossRefGoogle Scholar
  94. Sarkar S, Blaney LM, Gupta A, Ghosh D, SenGupta AK (2008) Arsenic removal from groundwater and its safe containment in a rural environment: validation of a sustainable approach. Environ Sci Technol 42(12):4268–4273CrossRefGoogle Scholar
  95. Sarkar S, Greenleaf JE, SenGupta AK (2009) Ion exchange technology. In: encyclopedia of polymer science and technology. Wiley, Hoboken. doi: 10.1002/0471440264.pst171
  96. Sarkar S, Prakash P, SenGupta AK (2010a) Donnan membrane principle: opportunities for sustainable engineered processes and materials. Environ Sci Technol 44(4):1161–1166CrossRefGoogle Scholar
  97. Sarkar S, Greenleaf JE, Gupta A, Ghosh D, Blaney LM, Bandyopadhyay P, Biswas R, Dutta AK, SenGupta AK (2010b) Evolution of community-based arsenic removal systems in remote villages: assessment of decade-long operation. Water Res 44:5813–5822CrossRefGoogle Scholar
  98. Sarkar S, Chatterjee PK, Cumbal LH, SenGupta AK (2011a) Hybrid ion exchanger supported nanocomposites: sorption and sensing for environmental applications. Chem Eng. J 166(3):923–931CrossRefGoogle Scholar
  99. Sarkar S, Prakash P, SenGupta AK (2011b) Polymeric/inorganic hybrid ion exchanger: preparation, characterization and environmental applications. In: SenGupta AK (ed) Ion exchange and solvent extraction: a series of advances, vol 20. CRC Press, Boca Raton, pp 292–342Google Scholar
  100. Schmid G (1994) Clusters and colloids: from theory to applications. VCH, Weinheim 1994CrossRefGoogle Scholar
  101. SenGupta AK (1995) Ion exchange technology: advances in pollution control. CRC Press, Boca RatonGoogle Scholar
  102. SenGupta AK, Cumbal L (2005) Method of manufacture and use of hybrid anion exchanger for selective removal of contaminating ligands from fluids. US Patent No. 156136Google Scholar
  103. Sharma VK, Yngard RA, Lin Y (2009a) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145(1–2):83–96. doi: 10.1016/j.cis.2008.09.002 CrossRefGoogle Scholar
  104. Sharma YC, Srivastavaa V, Singh VK, Kaulc SN, Weng CH (2009b) Nano-adsorbents for the removal of metallic pollutants from water and wastewater. Environ Technol 30(6):583–609. doi: 10.1080/09593330902838080 CrossRefGoogle Scholar
  105. Shenhar R, Norsten TB, Rotello VM (2005) Polymer-mediated nanoparticle assembly: structural control and applications. Adv Mater 17:657–669CrossRefGoogle Scholar
  106. Shin S, Yoon H, Jang J (2008) Polymer-encapsulated iron oxide nanoparticles as highly efficient Fenton catalysts. Catal Commun 10(2):178–182CrossRefGoogle Scholar
  107. Shinkai H, Ikeda S, Akamatsu K, Nawafune H, Tomita S (2004) In: Synthesis and structural control of metal-containing polyimide nanocomposite. Somiya S, Doyama M (eds) Joint symposia of the Materials Research Society of Japan, Tokyo, Japan, Dec 23–24, 2004. Elsevier, Tokyo, pp 1223–1226Google Scholar
  108. Shubha KP, Raji C, Anirudhan TS (2001) Immobilization of heavy metals from aqueous solutions using polyacrylamide grafted hydrous tin (IV) oxide gel having carboxylate functional groups. Water Res 35(1):300–310CrossRefGoogle Scholar
  109. Sugunan A, Thanachayanont C, Dutta J, Hilborn JG (2005) Heavy-metal ion sensors using chitosan-capped gold nanoparticles. Sci Technol Adv Mater 6:335–340CrossRefGoogle Scholar
  110. Sun W, Wang DD, Zhong JH, Jiao K (2008) Electrocatalytic activity of hemoglobin in sodium alginate/SiO2 nanoparticle/ionic liquid BMIMPF6 composite film. J Solid State Electrochem 12(6):655–661CrossRefGoogle Scholar
  111. Trakhtenberg LI, Gerasimov GN, Grigoriev EI et al (2000) Nanoheterogeneous metal-polymer composites as a new type of effective and selective catalysts. In: Studies in surface science and catalysis, vol 130, part 2. Elsevier, Amsterdam, pp 941–946Google Scholar
  112. Tsoi GM, Senaratne U, Tackett RJ, Buc EC, Naik R, Vaishnava PP, Naik VM, Wenger LE (2004) Memory effects and magnetic interactions in a gamma-Fe2O3 nanoparticle system. J Appl Phys 97(10):10J507Google Scholar
  113. Tsoi GM, Wenger LE, Senaratne U, Tackett RJ, Buc EC, Naik R, Vaishnava PP, Naik V (2005) Memory effects in a superparamagnetic gamma-Fe2O3 system. Phys Rev B 72(1):8CrossRefGoogle Scholar
  114. Üzüm Ç, Shahwan T, Eroglu AE, Lieberwirth I, Scott TB, Hallam KR (2008) Application of zero-valent iron nanoparticles for the removal of aqueous CO2 + ions under various experimental conditions. Chem Eng J 144(2):213–220CrossRefGoogle Scholar
  115. Valentin R, Molvinger K, Quignard F, Brunel D (2003) Supercritical CO2 dried chitosan: an efficient intrinsic heterogeneous catalyst in fine chemistry. New J Chem 27(12):1690–1692CrossRefGoogle Scholar
  116. Vatutsina OM, Soldatov VS, Sokolova VI, Johann J, Bissen M, Weissenbacher A (2007) A new hybrid (polymer/inorganic) fibrous sorbent for arsenic removal from drinking water. React Funct Polym 67(3):184–201CrossRefGoogle Scholar
  117. Vincent T, Guibal E (2002) Chitosan-supported palladium catalyst. 1. Synthesis procedure. Ind Eng Chem Res 41(21):5158–5164CrossRefGoogle Scholar
  118. Vincent T, Guibal E (2003) Chitosan-supported palladium catalyst. 3. Influence of experimental parameters on nitrophenol degradation. Langmuir 19(20):8475–8483CrossRefGoogle Scholar
  119. Vincent T, Guibal E (2004) Chitosan-supported palladium catalyst. 5. Nitrophenol degradation using palladium supported on hollow chitosan fibers. Environ Sci Technol 38(15):4233–4240CrossRefGoogle Scholar
  120. Vincent T, Spinelli S, Guibal E (2003) Chitosan-supported palladium catalyst. II. Chlorophenol dehalogenation. Ind Eng Chem Res 42(24):5968–5976CrossRefGoogle Scholar
  121. Vincent T, Peirano F, Guibal E (2004) Chitosan supported palladium catalyst. VI. Nitroaniline degradation. J Appl Polym Sci 94(4):1634–1642CrossRefGoogle Scholar
  122. Wang CG, Zhang W (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31:2154–2156CrossRefGoogle Scholar
  123. Wang TC, Rubner MF, Cohen RE (2002) Polyelectrolyte multilayer nanoreactors for preparing silver nanoparticle composites: controlling metal concentration and nanoparticle size. Langmuir 18(8):3370–3375CrossRefGoogle Scholar
  124. Wang SF, Tan YM, Zhao DM, Liu GD (2008) Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-chitosan nanocomposite. Biosens Bioelectron 23(12):1781–1787CrossRefGoogle Scholar
  125. Welch CM, Compton RG (2006) The use of nanoparticles in electroanalysis: a review. Anal Bioanal Chem 384:601–619CrossRefGoogle Scholar
  126. Wenger LE, Tsoi GM, Vaishnava PP, Senaratne U, Buc EC, Naik R, Naik VA (2008) Magnetic properties of gamma-Fe2O3 nanoparticles precipitated in alginate Hydrogels. IEEE Trans Magn 44(11):2760–2763CrossRefGoogle Scholar
  127. White BR, Stackhouse BT, Holcombe JA (2009) Magnetic [gamma]-Fe2O3 nanoparticles coated with poly-l-cysteine for chelation of As(III), Cu(II), Cd(II), Ni(II), Pb(II) and Zn(II). J Hazard Mater 161(2–3):848–853CrossRefGoogle Scholar
  128. Wu SJ, Liou TH, Mi FL (2009a) Synthesis of zero-valent copper-chitosan nanocomposites and their application for treatment of hexavalent chromium. Bioresour Technol 100(19):4348–4353CrossRefGoogle Scholar
  129. Wu Y, Wang Y, Luo G, Dai Y (2009b) In situ preparation of magnetic Fe3O4-chitosan nanoparticles for lipase immobilization by cross-linking and oxidation in aqueous solution. Bioresour Technol 100(14):3459–3464CrossRefGoogle Scholar
  130. Xiong Z, Zhao DY, Pan G (2007) Rapid and complete destruction of perchlorate in water and ion-exchange brine using stabilized zero-valent iron nanoparticles. Water Res 41(15):3497–3505CrossRefGoogle Scholar
  131. Xu J, Bhattacharyya D (2006) Fe/Pd nanoparticle immobilization in microfiltration membrane pores: synthesis, characterization, and application in the dechlorination of polychlorinated biphenyls. Ind Eng Chem Res 46(8):2348–2359CrossRefGoogle Scholar
  132. Yang J, Yang T, Feng YY, Jiao K (2007) A DNA electrochemical sensor based on nanogold-modified poly-2,6-pyridinedicarboxylic acid film and detection of PAT gene fragment. Anal Biochem 365(1):24–30CrossRefGoogle Scholar
  133. Yang TI, Brown RNC, Kempel LC, Kofinas P (2008) Magneto-dielectric properties of polymer-Fe3O4 nanocomposites. J Magn Magn Mater 320(21):2714–2720CrossRefGoogle Scholar
  134. Zagorodni AA (2007) Ion exchange materials: properties and applications. Elsevier, UKGoogle Scholar
  135. Zhang QJ, Pan BC, Zhang WM, Pan BJ, Zhang QX, Ren HQ (2008a) Arsenate removal from aqueous media by nanosized hydrated ferric oxide (HFO)-loaded polymeric sorbents: effect of HFO loadings. Ind Eng Chem Res 47(11):3957–3962CrossRefGoogle Scholar
  136. Zhang QJ, Pan BC, Chen XQ, Zhang WM, Pan BJ, Zhang QX, Lv L, Zhao XS (2008b) Preparation of polymer-supported hydrated ferric oxide based on Donnan membrane effect and its application for arsenic removal. Sci China B 51:379–385CrossRefGoogle Scholar
  137. Zhao XL, Ding XB, Deng ZH, Zheng ZH, Peng YX, Tian CR, Long XP (2006) A kind of smart gold nanoparticle-hydrogel composite with tunable thermo-switchable electrical properties. New J Chem 30(6):915–920CrossRefGoogle Scholar
  138. Zhi L, Zhao T, Yu Y (2002) Preparation of phenolic resin/silver nanocomposites via in situ reduction. Scr Mater 47(12):875–879CrossRefGoogle Scholar
  139. Zhou XF, Zhang XH, Yu XH, Zha X et al (2008) The effect of conjugation to gold nanoparticles on the ability of low molecular weight chitosan to transfer DNA vaccine. Biomater 29(1):111–117CrossRefGoogle Scholar
  140. Zouboulis AI, Katsoyiannis IA (2002) Arsenic removal using iron oxide loaded alginate beads. Ind Eng Chem Res 41(24):6149–6155CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Sudipta Sarkar
    • 1
    • 4
  • E. Guibal
    • 2
  • F. Quignard
    • 3
  • A. K. SenGupta
    • 1
  1. 1.Environmental Engineering ProgramLehigh UniversityBethlehemUSA
  2. 2.Ecole des Mines d’Alès, Laboratoire Génie de l’Environnement Industriel, BPCI GroupAlès CedexFrance
  3. 3.Institut Charles Gerhardt Montpellier-UMR 5253-CNRS-UMII-ENSCM-UMI, Matériaux Avancés pour la Catalyse et la SantéMontpellier Cedex 5France
  4. 4.Department of Biotechnology and Environmental SciencesThapar UniversityPatialaIndia

Personalised recommendations