Skip to main content
Log in

Solvothermal preparation of nano-β-HgS from a precursor, bis(dibenzyldithiocarbamato)mercury(II)

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A simple solvothermal method for the selective synthesis of β-HgS (meta cinnabar) nanoparticles in aqueous solutions is reported with bis(dibenzyldithiocarbamato)mercury(II) as the precursor. Crystal structure, size, morphology and composition of the products are characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analysis, high-resolution transmission electron microscopy (HRTEM), SAED and X-ray photoelectron spectroscopy (XPS). PXRD shows (111), (220), (200), (311), (222), (400), (331), (420) reflections characteristic of β-HgS. SEM micrographs display the spherical nature of the nano-β-HgS. EDX analysis showed the presence of Hg and S. HRTEM images indicate the spherical nature of the nanoparticles with their size in the range of 10–15 nm and the FFT pattern shows the crystalline nature of the spherical particles. The results are in agreement with those estimated from the XRD pattern. XPS signals observed at 162.6 and 162.8 eV are due to S2p 3/2 and S2p 1/2 electrons and the S2s was observed at 222.3 eV. The band gap of nano-β-HgS has been found to be 3.6 eV from the UV–visible spectral measurement. The blue-shifted band gap compared to the bulk HgS is a consequence of “size quantization” effect. A comprehensive characterization of the precursor by IR and single crystal X-ray crystallography shows the presence of HgS4 coordination environment, with a distinct Hg–S bond asymmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Afzaal M, Ellwood K, Pickeft NL, Brien PO’, Raftery J, Walfers J (2004) Growth of lead chalcogenide thin films using single-source precursors. J Mater Chem 14:1310–1315. doi:10.1039/B313063K

    Article  CAS  Google Scholar 

  • Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22:47–52. doi:10.1038/nbt927

    Article  CAS  Google Scholar 

  • ArulPrakasam B, Ramalingam K, Bocelli G, Cantoni A (2009) Spectral, BVS, and thermal studies on bisdithiocarbamates of divalent Zn, Cd, and their adducts: Single crystal X-ray structure redetermination of (diiodo) (tetraethylthiuramdisulfide)mercury(II), [Hg(tetds)I2]. Phosphor Sulfur Silicon Relat Elem 184:2020–2033. doi:10.1080/10426500802418016

    Article  Google Scholar 

  • Brese NE, Keeffe MO (1991) Bond-valence parameters for solids. Acta Crystallogr B47:192–197. doi:10.1107/S0108768190011041

    CAS  Google Scholar 

  • Bruker, SADABS (version 2008, 1-0). Bruker AXS Inc., Madison, Wisconsin, USA

  • Casas JS, Sanchez A, Bravo J, Garcia-Fontan S, Castellano EE, Jones MM (1989) Cadmium coordination chemistry related to chelate therapy. Inorg Chim Acta 158:119–126. doi:10.1016/S0020-1693(00)84021-9

    Article  CAS  Google Scholar 

  • Chieh C, Leung LPC (1976) Crystal structure and vibrational spectra of methyl, diethyldithiocarbamatomercury(II). Can J Chem 54:3077–3084. doi:10.1139/v76-438

    Article  CAS  Google Scholar 

  • Dai H, Wang EW, Lu YZ, Fan SS, Lieber CM (1995) Synthesis and characterization of carbide nano rods. Nature 375:769–772. doi:10.1038/375769a0

    Article  CAS  Google Scholar 

  • Delin A, Kluner T (2002) Excitation spectra and ground-state properties from density-functional theory for the inverted band-structure systems β-HgS, HgSe, and HgTe. Phys Rev B 66:035117. doi:10.1103/PhysRevB.66.035117

    Article  Google Scholar 

  • Faruggia LJ (1999) ORTEP-3 for Windows. University of Glasgow, Scotland

    Google Scholar 

  • Fuhrer MS, Nygard J, Shih L, Forero M, Yoon YG, Mazzoni MSC, Choi HJ (2000) Crossed nanotube junctions. Science 288:494–497. doi:10.1126/science.288.5465.494

    Article  CAS  Google Scholar 

  • Green M, Prince P, Gardener M, Steed J (2004) Mercury(II)N,N-methyl-phenyl ethyldithiocarbamate and its use as a precursor for the room-temperature solution deposition of β-HgS thin films. Adv Mater 12:994–996. doi:10.1103/PhysRevB.66.035117

    Article  Google Scholar 

  • Higginson KA, Kuno M, Bonevich J, Qadri SB, Yousuf M, Mattoussi H (2002) Synthesis and characterization of colloidal β-HgS quantum dots. J Phys Chem B 106:9982–9985. doi:10.1021/jp026232x

    Article  CAS  Google Scholar 

  • Jones MM, Jones SG (1983) Structure–activity relationship with therapeutic chelating agents. Inorg Chim Acta 79:288–289. doi:10.1016/S0020-1693(00)95336-2

    Article  Google Scholar 

  • Kale SS, Lokhande CD (1999) Preparation and characterization of HgS films by chemical deposition. Mater Chem Phys 59:242–246. doi:10.1016/S0254-0584(99)00048-6

    Article  CAS  Google Scholar 

  • Keeffe MO (1989) Struct Bond (Berlin) 71:162–190. doi:10.1007/3-540-50775-2_5

    Google Scholar 

  • Keeffe MO, Brese NE (1991) Atom sizes and bond lengths in molecules and crystals. J Am Chem Soc 113:3226–3229. doi:10.1021/ja00009a002

    Article  Google Scholar 

  • Kim S, Lim YT, Soltesz EG, Grand AMD, Lee J, Nakayama A, Parker T, Mihaljevic JA, Laurence RG, Dor DM, Cohn LH, Bawendi MG (2004) Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22:93–97. doi:10.1038/nbt920

    Article  CAS  Google Scholar 

  • Klug H, Alexander L (eds) (1962) X-ray diffraction procedures. Wiley, New York, pp 125–140

    Google Scholar 

  • Kuno M, Higginson KA, Qadri SB, Yousuf M, Lee SH, Davis BL, Mattoussi H (2003) Molecular clusters of binary and ternary mercury chalcogenides: colloidal synthesis, characterization, and optical spectra. J Phys Chem B 107:5758–5767. doi:10.1002/chin.200336009

    Article  CAS  Google Scholar 

  • Lai CS, Tiekink ERT (2002) Phenyl(pyrrolinedithiocarbamato)mercury(II). Acta Crystallogr E 58:674–675. doi:10.1107/S1600536802019372

    Article  Google Scholar 

  • Lai CS, Tiekink ERT (2003) Supramolecular association in organomercury(II) 1,1-dithiolates. Complementarity between Hg-S and hydrogen bonding interactions in organomercury(II) 2-amino-cyclopent-1-ene-1-carbodithioates. Cryst Eng Com 5:253–261. doi:10.1039/B305363F

    CAS  Google Scholar 

  • Lakshmikumar ST, Rastogi AC (1994) Selenization of Cu and In thin films for the preparation of selenide photo-absorber layers in solar cells using Se vapour source. Sol Energy Mater Sol Cells 32:7–19. doi:10.1016/0927-0248(94)90251-8

    Article  CAS  Google Scholar 

  • Lan GY, Lin YW, Lin ZH, Chang HT (2010) Synthesis and characterization of ZnxHg1 − xSeyS1 − y quantum dots. J Nanopart Res 12:1377–1388. doi:10.1007/s11051-009-9683-1

    Article  CAS  Google Scholar 

  • Li H, Zhu Y, Chen S, Palchik O, Xiong J, Koltypin Y, Gofer AG (2003) A novel ultrasound-assisted approach to the synthesis of CdSe and CdS nanoparticles. J Solid State Chem 172:102–110. doi:10.1016/S0022-4596(02)00138-X

    Article  CAS  Google Scholar 

  • Mahapatra AK, Dash K (2006) Synthesis and characterization of colloidal β-HgS quantum dots. Physica E 35:9–15. doi:10.1016/j.physe.2006.03.164

    Article  CAS  Google Scholar 

  • Marimuthu G, Ramalingam K, Rizzoli C (2010) Synthesis, spectral and thermal studies of 2,2′-bipyridyl adducts of bis(N-alkyl-N-phenyldithiocarbamato)zinc(II). Polyhedron 29:1555–1560. doi:10.1016/j.poly.2010.02.001

    Article  CAS  Google Scholar 

  • Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544. doi:10.1126/science.1104274

    Article  CAS  Google Scholar 

  • Mongellaz F, Fillot A, Griot R, De Lalle LG (1994) Thermoelectric cooler for infrared detectors. Proc SPIE Int Soc Opt Eng 156:12–17. doi:10.1117/12.178600

    Google Scholar 

  • Nieuwenhuizen J, Ehless AW, Haaghoot JG, Janse SR, Reedijk J, Baerends J (1999) The mechanism of zinc(II)-dithiocarbamate accelerated vulcanization uncovered; Theoretical and experimental evidence. J Am Chem Soc 121:163–168. doi:10.1021/ja982217n

    Article  CAS  Google Scholar 

  • Ramalingam K, Uma S, Rizzoli C, Marimuthu G (2010) Supramolecular interactions in high molecular weight bisdithiocarbamate adducts of divalent Zn(II), Cd(II) and Hg(II): spectral, VBS, and single crystal X-ray structural studies on MS4N2 chromophores. J Coord Chem 63:4123–4135. doi:10.1080/00958972.2010.528409

    Article  CAS  Google Scholar 

  • Sreekumari Nair P, Radhakrishnan T, Revaprasadu N, Kolawole GA, Brien PO (2004) The synthesis of HgS nanoparticles in polystyrene matrix. J Mater Chem 14:581–584. doi:10.1039/B304098B

    Article  Google Scholar 

  • Thorp HH (1992) Bond valence sum analysis of metal-ligand bond lengths in metalloenzymes and model complexes. Inorg Chem 31:1585–1588. doi:10.1021/ic00035a012

    Article  CAS  Google Scholar 

  • Tokyo N (1975) Optical absorption and dispersion in rf-sputtered α-HgS films. J Appl Phys 46:4857–4862. doi:10.1063/1.321519

    Article  Google Scholar 

  • Tsunekawa S, Fukuda T, Kasuya A (2000) Blue shift in ultraviolet absorption spectra of monodisperse CeO2-nanoparticles. J Appl Phys 87:1318–1321. doi:10.1063/1.372016

    Article  CAS  Google Scholar 

  • Wang H, Zhang JR, Zhu JJA (2001) Microwave assisted heating method for the rapid synthesis of sphalrite-type mercury sulfide nanocrystals with different sizes. J Cryst Growth 233:829–836. doi:10.1016/S0022-0248(01)01629-3

    Article  CAS  Google Scholar 

  • Wentian L, Thorp HH (1993) Bond valence sum analysis of metal-ligand bond lengths in metalloenzymes and model complexes. 2. Refined distances and other enzymes. Inorg Chem 32:4102–4105. doi:10.1021/ic00071a023

    Article  Google Scholar 

  • Zhu JJ, Liu SW, Chen S, Palchik O, Koltypin Y, Gedanken A (2000) A novel sonochemical method for the preparation of nanophasic sulfides: Synthesis of HgS and PbS nanoparticles. J Solid State Chem 153:342–348. doi:10.1006/jssc.2000.8780

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ramalingam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marimuthu, G., Ramalingam, K., Rizzoli, C. et al. Solvothermal preparation of nano-β-HgS from a precursor, bis(dibenzyldithiocarbamato)mercury(II). J Nanopart Res 14, 710 (2012). https://doi.org/10.1007/s11051-011-0710-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-011-0710-7

Keywords

Navigation