Advertisement

Solvothermal preparation of nano-β-HgS from a precursor, bis(dibenzyldithiocarbamato)mercury(II)

  • G. Marimuthu
  • K. Ramalingam
  • C. Rizzoli
  • M. Arivanandhan
Research Paper

Abstract

A simple solvothermal method for the selective synthesis of β-HgS (meta cinnabar) nanoparticles in aqueous solutions is reported with bis(dibenzyldithiocarbamato)mercury(II) as the precursor. Crystal structure, size, morphology and composition of the products are characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analysis, high-resolution transmission electron microscopy (HRTEM), SAED and X-ray photoelectron spectroscopy (XPS). PXRD shows (111), (220), (200), (311), (222), (400), (331), (420) reflections characteristic of β-HgS. SEM micrographs display the spherical nature of the nano-β-HgS. EDX analysis showed the presence of Hg and S. HRTEM images indicate the spherical nature of the nanoparticles with their size in the range of 10–15 nm and the FFT pattern shows the crystalline nature of the spherical particles. The results are in agreement with those estimated from the XRD pattern. XPS signals observed at 162.6 and 162.8 eV are due to S2p 3/2 and S2p 1/2 electrons and the S2s was observed at 222.3 eV. The band gap of nano-β-HgS has been found to be 3.6 eV from the UV–visible spectral measurement. The blue-shifted band gap compared to the bulk HgS is a consequence of “size quantization” effect. A comprehensive characterization of the precursor by IR and single crystal X-ray crystallography shows the presence of HgS4 coordination environment, with a distinct Hg–S bond asymmetry.

Keywords

Nano-HgS Precursor Solvothermal Powder diffraction Transmission electron microscope Semiconductor nanoparticles Quantum size effect 

References

  1. Afzaal M, Ellwood K, Pickeft NL, Brien PO’, Raftery J, Walfers J (2004) Growth of lead chalcogenide thin films using single-source precursors. J Mater Chem 14:1310–1315. doi: 10.1039/B313063K CrossRefGoogle Scholar
  2. Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22:47–52. doi: 10.1038/nbt927 CrossRefGoogle Scholar
  3. ArulPrakasam B, Ramalingam K, Bocelli G, Cantoni A (2009) Spectral, BVS, and thermal studies on bisdithiocarbamates of divalent Zn, Cd, and their adducts: Single crystal X-ray structure redetermination of (diiodo) (tetraethylthiuramdisulfide)mercury(II), [Hg(tetds)I2]. Phosphor Sulfur Silicon Relat Elem 184:2020–2033. doi: 10.1080/10426500802418016 CrossRefGoogle Scholar
  4. Brese NE, Keeffe MO (1991) Bond-valence parameters for solids. Acta Crystallogr B47:192–197. doi: 10.1107/S0108768190011041 Google Scholar
  5. Bruker, SADABS (version 2008, 1-0). Bruker AXS Inc., Madison, Wisconsin, USAGoogle Scholar
  6. Casas JS, Sanchez A, Bravo J, Garcia-Fontan S, Castellano EE, Jones MM (1989) Cadmium coordination chemistry related to chelate therapy. Inorg Chim Acta 158:119–126. doi: 10.1016/S0020-1693(00)84021-9 CrossRefGoogle Scholar
  7. Chieh C, Leung LPC (1976) Crystal structure and vibrational spectra of methyl, diethyldithiocarbamatomercury(II). Can J Chem 54:3077–3084. doi: 10.1139/v76-438 CrossRefGoogle Scholar
  8. Dai H, Wang EW, Lu YZ, Fan SS, Lieber CM (1995) Synthesis and characterization of carbide nano rods. Nature 375:769–772. doi: 10.1038/375769a0 CrossRefGoogle Scholar
  9. Delin A, Kluner T (2002) Excitation spectra and ground-state properties from density-functional theory for the inverted band-structure systems β-HgS, HgSe, and HgTe. Phys Rev B 66:035117. doi: 10.1103/PhysRevB.66.035117 CrossRefGoogle Scholar
  10. Faruggia LJ (1999) ORTEP-3 for Windows. University of Glasgow, ScotlandGoogle Scholar
  11. Fuhrer MS, Nygard J, Shih L, Forero M, Yoon YG, Mazzoni MSC, Choi HJ (2000) Crossed nanotube junctions. Science 288:494–497. doi: 10.1126/science.288.5465.494 CrossRefGoogle Scholar
  12. Green M, Prince P, Gardener M, Steed J (2004) Mercury(II)N,N-methyl-phenyl ethyldithiocarbamate and its use as a precursor for the room-temperature solution deposition of β-HgS thin films. Adv Mater 12:994–996. doi: 10.1103/PhysRevB.66.035117 CrossRefGoogle Scholar
  13. Higginson KA, Kuno M, Bonevich J, Qadri SB, Yousuf M, Mattoussi H (2002) Synthesis and characterization of colloidal β-HgS quantum dots. J Phys Chem B 106:9982–9985. doi: 10.1021/jp026232x CrossRefGoogle Scholar
  14. Jones MM, Jones SG (1983) Structure–activity relationship with therapeutic chelating agents. Inorg Chim Acta 79:288–289. doi: 10.1016/S0020-1693(00)95336-2 CrossRefGoogle Scholar
  15. Kale SS, Lokhande CD (1999) Preparation and characterization of HgS films by chemical deposition. Mater Chem Phys 59:242–246. doi: 10.1016/S0254-0584(99)00048-6 CrossRefGoogle Scholar
  16. Keeffe MO (1989) Struct Bond (Berlin) 71:162–190. doi: 10.1007/3-540-50775-2_5 Google Scholar
  17. Keeffe MO, Brese NE (1991) Atom sizes and bond lengths in molecules and crystals. J Am Chem Soc 113:3226–3229. doi: 10.1021/ja00009a002 CrossRefGoogle Scholar
  18. Kim S, Lim YT, Soltesz EG, Grand AMD, Lee J, Nakayama A, Parker T, Mihaljevic JA, Laurence RG, Dor DM, Cohn LH, Bawendi MG (2004) Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22:93–97. doi: 10.1038/nbt920 CrossRefGoogle Scholar
  19. Klug H, Alexander L (eds) (1962) X-ray diffraction procedures. Wiley, New York, pp 125–140Google Scholar
  20. Kuno M, Higginson KA, Qadri SB, Yousuf M, Lee SH, Davis BL, Mattoussi H (2003) Molecular clusters of binary and ternary mercury chalcogenides: colloidal synthesis, characterization, and optical spectra. J Phys Chem B 107:5758–5767. doi: 10.1002/chin.200336009 CrossRefGoogle Scholar
  21. Lai CS, Tiekink ERT (2002) Phenyl(pyrrolinedithiocarbamato)mercury(II). Acta Crystallogr E 58:674–675. doi: 10.1107/S1600536802019372 CrossRefGoogle Scholar
  22. Lai CS, Tiekink ERT (2003) Supramolecular association in organomercury(II) 1,1-dithiolates. Complementarity between Hg-S and hydrogen bonding interactions in organomercury(II) 2-amino-cyclopent-1-ene-1-carbodithioates. Cryst Eng Com 5:253–261. doi: 10.1039/B305363F Google Scholar
  23. Lakshmikumar ST, Rastogi AC (1994) Selenization of Cu and In thin films for the preparation of selenide photo-absorber layers in solar cells using Se vapour source. Sol Energy Mater Sol Cells 32:7–19. doi: 10.1016/0927-0248(94)90251-8 CrossRefGoogle Scholar
  24. Lan GY, Lin YW, Lin ZH, Chang HT (2010) Synthesis and characterization of ZnxHg1 − xSeyS1 − y quantum dots. J Nanopart Res 12:1377–1388. doi: 10.1007/s11051-009-9683-1 CrossRefGoogle Scholar
  25. Li H, Zhu Y, Chen S, Palchik O, Xiong J, Koltypin Y, Gofer AG (2003) A novel ultrasound-assisted approach to the synthesis of CdSe and CdS nanoparticles. J Solid State Chem 172:102–110. doi: 10.1016/S0022-4596(02)00138-X CrossRefGoogle Scholar
  26. Mahapatra AK, Dash K (2006) Synthesis and characterization of colloidal β-HgS quantum dots. Physica E 35:9–15. doi: 10.1016/j.physe.2006.03.164 CrossRefGoogle Scholar
  27. Marimuthu G, Ramalingam K, Rizzoli C (2010) Synthesis, spectral and thermal studies of 2,2′-bipyridyl adducts of bis(N-alkyl-N-phenyldithiocarbamato)zinc(II). Polyhedron 29:1555–1560. doi: 10.1016/j.poly.2010.02.001 CrossRefGoogle Scholar
  28. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544. doi: 10.1126/science.1104274 CrossRefGoogle Scholar
  29. Mongellaz F, Fillot A, Griot R, De Lalle LG (1994) Thermoelectric cooler for infrared detectors. Proc SPIE Int Soc Opt Eng 156:12–17. doi: 10.1117/12.178600 Google Scholar
  30. Nieuwenhuizen J, Ehless AW, Haaghoot JG, Janse SR, Reedijk J, Baerends J (1999) The mechanism of zinc(II)-dithiocarbamate accelerated vulcanization uncovered; Theoretical and experimental evidence. J Am Chem Soc 121:163–168. doi: 10.1021/ja982217n CrossRefGoogle Scholar
  31. Ramalingam K, Uma S, Rizzoli C, Marimuthu G (2010) Supramolecular interactions in high molecular weight bisdithiocarbamate adducts of divalent Zn(II), Cd(II) and Hg(II): spectral, VBS, and single crystal X-ray structural studies on MS4N2 chromophores. J Coord Chem 63:4123–4135. doi: 10.1080/00958972.2010.528409 CrossRefGoogle Scholar
  32. Sreekumari Nair P, Radhakrishnan T, Revaprasadu N, Kolawole GA, Brien PO (2004) The synthesis of HgS nanoparticles in polystyrene matrix. J Mater Chem 14:581–584. doi: 10.1039/B304098B CrossRefGoogle Scholar
  33. Thorp HH (1992) Bond valence sum analysis of metal-ligand bond lengths in metalloenzymes and model complexes. Inorg Chem 31:1585–1588. doi: 10.1021/ic00035a012 CrossRefGoogle Scholar
  34. Tokyo N (1975) Optical absorption and dispersion in rf-sputtered α-HgS films. J Appl Phys 46:4857–4862. doi: 10.1063/1.321519 CrossRefGoogle Scholar
  35. Tsunekawa S, Fukuda T, Kasuya A (2000) Blue shift in ultraviolet absorption spectra of monodisperse CeO2-nanoparticles. J Appl Phys 87:1318–1321. doi: 10.1063/1.372016 CrossRefGoogle Scholar
  36. Wang H, Zhang JR, Zhu JJA (2001) Microwave assisted heating method for the rapid synthesis of sphalrite-type mercury sulfide nanocrystals with different sizes. J Cryst Growth 233:829–836. doi: 10.1016/S0022-0248(01)01629-3 CrossRefGoogle Scholar
  37. Wentian L, Thorp HH (1993) Bond valence sum analysis of metal-ligand bond lengths in metalloenzymes and model complexes. 2. Refined distances and other enzymes. Inorg Chem 32:4102–4105. doi: 10.1021/ic00071a023 CrossRefGoogle Scholar
  38. Zhu JJ, Liu SW, Chen S, Palchik O, Koltypin Y, Gedanken A (2000) A novel sonochemical method for the preparation of nanophasic sulfides: Synthesis of HgS and PbS nanoparticles. J Solid State Chem 153:342–348. doi: 10.1006/jssc.2000.8780 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • G. Marimuthu
    • 1
  • K. Ramalingam
    • 1
  • C. Rizzoli
    • 2
  • M. Arivanandhan
    • 3
  1. 1.Department of ChemistryAnnamalai UniversityChidambaramIndia
  2. 2.Department of General and Inorganic ChemistryUniversity of ParmaParmaItaly
  3. 3.Nanodevices and Nanomaterial Division, Research Institute of ElectronicsNational University Corporation, Shizuoka UniversityHamamatsuJapan

Personalised recommendations