Electrostatically mediated adsorption by nanodiamond and nanocarbon particles

  • Natalie M. Gibson
  • Tzy-Jiun Mark Luo
  • Olga Shenderova
  • Alexey P. Koscheev
  • Donald W. Brenner
Research Paper


Nanodiamond (ND) and other nanocarbon particles are popular platforms for the immobilization of molecular species. In the present research, factors affecting adsorption and desorption of propidium iodide (PI) dye, chosen as a charged molecule model, on ND and sp 2 carbon nanoparticles were studied, with a size ranging from 75 to 4,305 nm. It was found that adsorption of PI molecules, as characterized by ultraviolet–visible spectroscopy, on ND particles is strongly influenced by sorbent-sorbate electrostatic interactions. Different types of NDs with a negative zeta potential were found to adsorb positively charged PI molecules, while no PI adsorption was observed for NDs with a positive zeta potential. The type and density of surface groups of negatively charged NDs greatly influenced the degree and capacity of the PI adsorbed. Ozone-purified NDs had the highest capacity for PI adsorption, due to its greater density of oxygen containing groups, i.e., acid anhydrides and carboxyls, as assessed by TDMS and TOF–SIMS. Single wall nanohorns and carbon onion particles were found to adsorb PI regardless of their zeta potential; this is likely due to π bonding between the aromatic rings of PI and the graphitic surface of the materials and the internal cavity of the horns.


Adsorption Diamonds Surface characterization Surface modification Nanoparticles Drug delivery Biomedical application 



This research is supported by the Materials World Network program of the National Science Foundation under Grant No DMR-0602906. O.S. acknowledges the partial support through Air Force Office of Scientific Research under grant N66001-04-1-8933. In addition, we thank V. Kuznetsov, of the Boreskov Institute of Catalysis, Novosibirsk for providing onion-like carbon samples, V. Vorobyev for providing NDW samples, Yury Gogotsi, Department of Materials Science and Engineering and Nanomaterials Group at Drexel University, for the BET analysis, Elaine Chuanzhen Zhou at the Analytical Instrumentation Facility for TOF–SIMS experiments and Zachary Fitzgerald, Department of Materials Science and Engineering at North Carolina State University for his modeling of the PI molecule. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Supplementary material

11051_2011_700_MOESM1_ESM.pdf (58 kb)
Supplementary material 1 (PDF 58 kb)


  1. Bakowicz K, Mitura S (2002) Biocompatibility of NCD. J Wide Bandgap Mater 9(4):261–272CrossRefGoogle Scholar
  2. Chao JI, Perevedentseva E, Chung PH, Liu KK, Cheng CY, Chang CC, Cheng CL (2007) Nanometer-sized diamond particle as a probe for biolabeling. Biophys J 93(6):2199–2208CrossRefGoogle Scholar
  3. Chen M, Pierstorff ED, Lam R, Li SY, Huang H, Osawa E, Ho D (2009) Nanodiamond-mediated delivery of water-insoluble therapeutics. ACS Nano 3(7):2016–2022CrossRefGoogle Scholar
  4. Chiganova GA (2000) Aggregation of particles in ultradispersed diamond hydrosols. Colloid J 62:238–243Google Scholar
  5. Chow EK, Zhang X-Q, Chen M, Lam R, Robinson E, Huang H, Schaffer D, Osawa E, Goga A, Ho D (2011) Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci Transl Med 3(73):1–11CrossRefGoogle Scholar
  6. Chung PH, Perevedentseva E, Tu JS, Chang CC, Cheng CL (2005) Spectroscopic study of bio-functionalized nanodiamonds. Diam Relat Mater 15(4–8):622–625CrossRefGoogle Scholar
  7. Cunningham G, Panich AM, Shames AI, Petrov I, Shenderova O (2008) Ozone-modified detonation nanodiamonds. Diam Relat Mater 17(4–5):650–654CrossRefGoogle Scholar
  8. Foglieni C, Meoni C, Davalli AM (2001) Fluorescent dyes for cell viability: an application on prefixed conditions. Histochem Cell Biol 115(3):223–229Google Scholar
  9. Gibson N, Shenderova O, Puzyr A, Purtov K, Grichko V, Luo TJM, Fitzgerald Z, Bondar V, Brenner D (2007) Nanodiamonds for detoxification. In: NSTI nanotechnology conference and trade show–NSTI nanotech technical proceedings, vol 2, Nanotech, Santa Clara, pp. 713–716Google Scholar
  10. Gibson N, Shenderova O, Luo TJM, Moseenkov S, Bondar V, Puzyr A, Purtov K, Fitzgerald Z, Brenner DW (2009) Colloidal stability of modified nanodiamond particles. Diam Relat Mater 18(4):262–620CrossRefGoogle Scholar
  11. Gibson NM, Luo TJM, Shenderova O, Choi YJ, Brenner DW (2010a) Modified nanodiamonds for adsorption of propidium iodide and aflatoxin. MRS Fall 2009 Proceedings, available online, Paper #1236-SS09-05Google Scholar
  12. Gibson NM, Luo TJM, Shenderova O, Choi YJ, Fitzgerald Z, Brenner DW (2010b) Fluorescent dye adsorption on nanocarbon substrates through electrostatic. Interactions 19(2–3):234–237Google Scholar
  13. Giles CH, Smith D, Huitson A (1974) A general treatment and classification of the solute adsorption isotherm. I. Theoretical. J Colloid Interf Sci 47(3):755–765CrossRefGoogle Scholar
  14. Gitig DM, Koff A (2001) Cdk pathway: cyclin-dependent kinases and cyclin-dependent kinase inhibitors. Mol Biotechnol 19(2):179–188CrossRefGoogle Scholar
  15. Grichko V, Grishko V, Shenderova O (2006) Nanodiamond bullets and their biological targets. NanoBioTechnol 2(1–2):1294–1551Google Scholar
  16. Hens S, Cunningham G, Tyler T, Moseenkov S, Kuznetsov V, Shenderova O (2008) Nanodiamond bioconjugate probes and their collection by electrophoresis. Diam Relat Mater 17(11):1858–1866CrossRefGoogle Scholar
  17. Huang LCL, Chang HC (2004) Adsorption and immobilization of cytochrome c on nanodiamonds. Langmuir 20(14):5870–5884CrossRefGoogle Scholar
  18. Huang TS, Tzeng Y, Liu YK, Chen YC, Walker KR, Guntupalli R, Liu C (2004) Immobilization of antibodies and bacterial binding on nanodiamond and carbon nanotubes for biosensor applications. Diam Relat Mater 13(4–8):1098–1102CrossRefGoogle Scholar
  19. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38CrossRefGoogle Scholar
  20. Kossovsky N, Gelman A, Hnatyszyn HJ, Rajguru A, Garrell RL, Torbati S, Freitas SSF, Chow MG (1995) Surface-modified diamond nanoparticles as antigen delivery vehicles. Bioconjugugate Chem 6(5):507–511CrossRefGoogle Scholar
  21. Krueger A (2007) New carbon materials: biological applications of functionalized nanodiamond materials. Chem A Eur J 14(5):1382–1390CrossRefGoogle Scholar
  22. Liu KK, Cheng CL, Chang CC, Chao JI (2007) Biocompatible and detectable carboxylated nanodiamond on human cell. Nanotechnology 18(32):325102CrossRefGoogle Scholar
  23. Menozzi FD, Michel A, Pora H, Miller AOA (1990) Absorption method for rapid decontamination of solutions of ethidium bromide and propidium iodide. Chromatographia 29(3–4):167–169CrossRefGoogle Scholar
  24. Mohan N, Chen CS, Hsieh HH, Wu YC, Chang HC (2010) In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett 10(9):3692–3699CrossRefGoogle Scholar
  25. Petrov I, Shenderova O, Grishko V, Grichko V, Tyler T, Cunningham G, McGuire G (2007) Detonation nanodiamonds simultaneously purified and modified by gas treatment. Diam Relat Mater 16(12):2098–2103CrossRefGoogle Scholar
  26. Puzyr AP, Bondar VS, (2003) Method of production of nanodiamonds of explosive synthesis with an increased colloidal stability, St. PetersburgGoogle Scholar
  27. Puzyr AP, Pozdniakova IO, Bondar VS (2004) Design of a luminescent biochip with nanodiamonds and bacterial luciferase. Phys Solid State 46(4):761–763CrossRefGoogle Scholar
  28. Puzyr AP, Baron AV, Purtov KV, Bortnikov EV, Skobelev NN, Mogilnaya OA, Bondar VS (2007a) Nanodiamonds with novel properties: a biological study. Diam Relat Mater 16(12):2124–2128CrossRefGoogle Scholar
  29. Puzyr AP, Purtov KV, Shenderova OA, Luo M, Brenner DW, Bondar VS (2007b) The adsorption of aflatoxin B1 by detonation-synthesis nanodiamonds. Doklady Biochem Biophys 417(1):299–301CrossRefGoogle Scholar
  30. Puzyr AP, Burov AE, Bondar VS, Trusov YN (2010) Neutralization of aflatoxin B1 by ozone treatment and adsorption by nanodiamonds. Nanotechnol Russ 5(1–2):137–141CrossRefGoogle Scholar
  31. Raina S, Kang WP, Davidson JL (2010) Nanodiamond macro- and microelectrode array bio-sensor. IEEE Sens Conf 2009:1780–1783Google Scholar
  32. Schmid I, Krall WJ, Uittenbogaart CH, Braun J, Giorgi V (1992) Dead cell discrimination with 7-amino-actinomycin D in combination with dual color immunofluorescence in single laser flow cytometry. Cytom Part A 13(2):204–208CrossRefGoogle Scholar
  33. Schrand AM, Huang HJ, Carlson C, Schlager J, Osawa E, Hussain S, Dai L (2007a) Are diamond nanoparticles cytotoxic? J Phys Chem B 111(1):2–7CrossRefGoogle Scholar
  34. Schrand AM, Dai L, Schlager JJ, Hussain SM, Osawa E (2007b) Differential biocompatibility of carbon nanotubes and nanodiamonds. Diam Relat Mater 16(2):2118–2123CrossRefGoogle Scholar
  35. Schrand AM, Johnson J, Dai L, Hussain SM, Schlager JJ, Zhu L, Hong Y, Osawa E (2008) Cytotoxicity and genotoxicity of carbon nanomaterials. In: Webster T (ed) Safety of nanoparticles: from manufacturing to clinical applications. Springer, ProvidenceGoogle Scholar
  36. Schrand AM, Hens SAC, Shenderova OA (2009) Nanodiamond particles: properties and perspectives for bioapplications. Crit Rev Solid State Mater Sci 34:18–74CrossRefGoogle Scholar
  37. Shenderova OA, Hens SAC (2010) Detonation nanodiamond particles processing, modification and bioapplications, In Ho D (ed) Nanodiamonds: applications in biology and nanoscale medicine, Springer, New York, pp 79–116Google Scholar
  38. Turner S, Lebedev OI, Shenderova O, Vlasov II, Verbeeck J, Van Tendeloo G (2009) Determination of size, morphology, and nitrogen impurity location in treated detonation nanodiamond by transmission electron microscopy. Adv Funct Mater 19(13):2116–2124CrossRefGoogle Scholar
  39. Ushizawa K, Sato Y, Mitsumory T, Machinami T, Ueda T, Ando T (2002) Covalent immobilization of DNA on diamond and its verification by diffuse reflectance infrared spectroscopy. Chem Phys Lett 351(1–2):105–108CrossRefGoogle Scholar
  40. Vaijayanthimala V, Tzeng YK, Chang HC, Li CL (2009) The biocompatibility of fluorescent nanodiamonds and their mechanism of cellular uptake. Nanotechnology 20(42):425103CrossRefGoogle Scholar
  41. Waring MJ (1965) Complex formation between ethidium bromide and nucleic acids. J Mol Biol 13(1):269–282CrossRefGoogle Scholar
  42. Xing Y, Dai L (2009) Nanodiamonds for nanomedicine. Nanomedicine 4(2):207–218CrossRefGoogle Scholar
  43. Yang W, Auciello O, Butler JE, Cai W, Carlisle JA, Gerbi JE, Gruen DM, Knickerbocker T, Lasserter TL, Russell JN, Smith LM, Hamers RJ (2002) DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates. Nat Mater 1:253–257CrossRefGoogle Scholar
  44. Yeap WS, Tan YY, Loh KP (2008) Using Detonation nanodiamond for the specific capture of glycoproteins. Anal Chem 80(12):4659–4665CrossRefGoogle Scholar
  45. Yu SJ, Kang MW, Chang HC, Chen KM, Yu YC (2005) Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J Am Chem Soc 127(50):17604–17605CrossRefGoogle Scholar
  46. Yuan Y, Chen Y, Liu JH, Wang H, Liu Y (2009) Biodistribution and fate of nanodiamonds in vivo. Diam Relat Mater 18(1):95–100CrossRefGoogle Scholar
  47. Zhu Y, Li W, Li Q, Li Y, Li Y, Zhang X, Huang Q (2009) Effects of serum proteins on intracellular uptake and cytotoxicity of carbon nanoparticles. Carbon 47(5):1351–1358CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Natalie M. Gibson
    • 1
  • Tzy-Jiun Mark Luo
    • 1
  • Olga Shenderova
    • 1
    • 2
  • Alexey P. Koscheev
    • 3
  • Donald W. Brenner
    • 1
  1. 1.Department of Materials Science and EngineeringNorth Carolina State UniversityRaleighUSA
  2. 2.International Technology CenterResearch Triangle ParkUSA
  3. 3.State Scientific Center of Russian FederationKarpov Institute of Physical ChemistryMoscowRussia

Personalised recommendations