Skip to main content
Log in

Electrostatically mediated adsorption by nanodiamond and nanocarbon particles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanodiamond (ND) and other nanocarbon particles are popular platforms for the immobilization of molecular species. In the present research, factors affecting adsorption and desorption of propidium iodide (PI) dye, chosen as a charged molecule model, on ND and sp 2 carbon nanoparticles were studied, with a size ranging from 75 to 4,305 nm. It was found that adsorption of PI molecules, as characterized by ultraviolet–visible spectroscopy, on ND particles is strongly influenced by sorbent-sorbate electrostatic interactions. Different types of NDs with a negative zeta potential were found to adsorb positively charged PI molecules, while no PI adsorption was observed for NDs with a positive zeta potential. The type and density of surface groups of negatively charged NDs greatly influenced the degree and capacity of the PI adsorbed. Ozone-purified NDs had the highest capacity for PI adsorption, due to its greater density of oxygen containing groups, i.e., acid anhydrides and carboxyls, as assessed by TDMS and TOF–SIMS. Single wall nanohorns and carbon onion particles were found to adsorb PI regardless of their zeta potential; this is likely due to π bonding between the aromatic rings of PI and the graphitic surface of the materials and the internal cavity of the horns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. MOPAC2009, Stewart, J.J.P. Stewart Computational Chemistry, Version 8.318 M web: http://OpenMOPAC.net.

References

  • Bakowicz K, Mitura S (2002) Biocompatibility of NCD. J Wide Bandgap Mater 9(4):261–272

    Article  CAS  Google Scholar 

  • Chao JI, Perevedentseva E, Chung PH, Liu KK, Cheng CY, Chang CC, Cheng CL (2007) Nanometer-sized diamond particle as a probe for biolabeling. Biophys J 93(6):2199–2208

    Article  CAS  Google Scholar 

  • Chen M, Pierstorff ED, Lam R, Li SY, Huang H, Osawa E, Ho D (2009) Nanodiamond-mediated delivery of water-insoluble therapeutics. ACS Nano 3(7):2016–2022

    Article  CAS  Google Scholar 

  • Chiganova GA (2000) Aggregation of particles in ultradispersed diamond hydrosols. Colloid J 62:238–243

    CAS  Google Scholar 

  • Chow EK, Zhang X-Q, Chen M, Lam R, Robinson E, Huang H, Schaffer D, Osawa E, Goga A, Ho D (2011) Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci Transl Med 3(73):1–11

    Article  Google Scholar 

  • Chung PH, Perevedentseva E, Tu JS, Chang CC, Cheng CL (2005) Spectroscopic study of bio-functionalized nanodiamonds. Diam Relat Mater 15(4–8):622–625

    Article  Google Scholar 

  • Cunningham G, Panich AM, Shames AI, Petrov I, Shenderova O (2008) Ozone-modified detonation nanodiamonds. Diam Relat Mater 17(4–5):650–654

    Article  CAS  Google Scholar 

  • Foglieni C, Meoni C, Davalli AM (2001) Fluorescent dyes for cell viability: an application on prefixed conditions. Histochem Cell Biol 115(3):223–229

    CAS  Google Scholar 

  • Gibson N, Shenderova O, Puzyr A, Purtov K, Grichko V, Luo TJM, Fitzgerald Z, Bondar V, Brenner D (2007) Nanodiamonds for detoxification. In: NSTI nanotechnology conference and trade show–NSTI nanotech technical proceedings, vol 2, Nanotech, Santa Clara, pp. 713–716

  • Gibson N, Shenderova O, Luo TJM, Moseenkov S, Bondar V, Puzyr A, Purtov K, Fitzgerald Z, Brenner DW (2009) Colloidal stability of modified nanodiamond particles. Diam Relat Mater 18(4):262–620

    Article  Google Scholar 

  • Gibson NM, Luo TJM, Shenderova O, Choi YJ, Brenner DW (2010a) Modified nanodiamonds for adsorption of propidium iodide and aflatoxin. MRS Fall 2009 Proceedings, available online, Paper #1236-SS09-05

  • Gibson NM, Luo TJM, Shenderova O, Choi YJ, Fitzgerald Z, Brenner DW (2010b) Fluorescent dye adsorption on nanocarbon substrates through electrostatic. Interactions 19(2–3):234–237

    CAS  Google Scholar 

  • Giles CH, Smith D, Huitson A (1974) A general treatment and classification of the solute adsorption isotherm. I. Theoretical. J Colloid Interf Sci 47(3):755–765

    Article  CAS  Google Scholar 

  • Gitig DM, Koff A (2001) Cdk pathway: cyclin-dependent kinases and cyclin-dependent kinase inhibitors. Mol Biotechnol 19(2):179–188

    Article  CAS  Google Scholar 

  • Grichko V, Grishko V, Shenderova O (2006) Nanodiamond bullets and their biological targets. NanoBioTechnol 2(1–2):1294–1551

    Google Scholar 

  • Hens S, Cunningham G, Tyler T, Moseenkov S, Kuznetsov V, Shenderova O (2008) Nanodiamond bioconjugate probes and their collection by electrophoresis. Diam Relat Mater 17(11):1858–1866

    Article  CAS  Google Scholar 

  • Huang LCL, Chang HC (2004) Adsorption and immobilization of cytochrome c on nanodiamonds. Langmuir 20(14):5870–5884

    Article  Google Scholar 

  • Huang TS, Tzeng Y, Liu YK, Chen YC, Walker KR, Guntupalli R, Liu C (2004) Immobilization of antibodies and bacterial binding on nanodiamond and carbon nanotubes for biosensor applications. Diam Relat Mater 13(4–8):1098–1102

    Article  CAS  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  CAS  Google Scholar 

  • Kossovsky N, Gelman A, Hnatyszyn HJ, Rajguru A, Garrell RL, Torbati S, Freitas SSF, Chow MG (1995) Surface-modified diamond nanoparticles as antigen delivery vehicles. Bioconjugugate Chem 6(5):507–511

    Article  CAS  Google Scholar 

  • Krueger A (2007) New carbon materials: biological applications of functionalized nanodiamond materials. Chem A Eur J 14(5):1382–1390

    Article  Google Scholar 

  • Liu KK, Cheng CL, Chang CC, Chao JI (2007) Biocompatible and detectable carboxylated nanodiamond on human cell. Nanotechnology 18(32):325102

    Article  Google Scholar 

  • Menozzi FD, Michel A, Pora H, Miller AOA (1990) Absorption method for rapid decontamination of solutions of ethidium bromide and propidium iodide. Chromatographia 29(3–4):167–169

    Article  CAS  Google Scholar 

  • Mohan N, Chen CS, Hsieh HH, Wu YC, Chang HC (2010) In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett 10(9):3692–3699

    Article  CAS  Google Scholar 

  • Petrov I, Shenderova O, Grishko V, Grichko V, Tyler T, Cunningham G, McGuire G (2007) Detonation nanodiamonds simultaneously purified and modified by gas treatment. Diam Relat Mater 16(12):2098–2103

    Article  CAS  Google Scholar 

  • Puzyr AP, Bondar VS, (2003) Method of production of nanodiamonds of explosive synthesis with an increased colloidal stability, St. Petersburg

  • Puzyr AP, Pozdniakova IO, Bondar VS (2004) Design of a luminescent biochip with nanodiamonds and bacterial luciferase. Phys Solid State 46(4):761–763

    Article  CAS  Google Scholar 

  • Puzyr AP, Baron AV, Purtov KV, Bortnikov EV, Skobelev NN, Mogilnaya OA, Bondar VS (2007a) Nanodiamonds with novel properties: a biological study. Diam Relat Mater 16(12):2124–2128

    Article  CAS  Google Scholar 

  • Puzyr AP, Purtov KV, Shenderova OA, Luo M, Brenner DW, Bondar VS (2007b) The adsorption of aflatoxin B1 by detonation-synthesis nanodiamonds. Doklady Biochem Biophys 417(1):299–301

    Article  CAS  Google Scholar 

  • Puzyr AP, Burov AE, Bondar VS, Trusov YN (2010) Neutralization of aflatoxin B1 by ozone treatment and adsorption by nanodiamonds. Nanotechnol Russ 5(1–2):137–141

    Article  Google Scholar 

  • Raina S, Kang WP, Davidson JL (2010) Nanodiamond macro- and microelectrode array bio-sensor. IEEE Sens Conf 2009:1780–1783

    Google Scholar 

  • Schmid I, Krall WJ, Uittenbogaart CH, Braun J, Giorgi V (1992) Dead cell discrimination with 7-amino-actinomycin D in combination with dual color immunofluorescence in single laser flow cytometry. Cytom Part A 13(2):204–208

    Article  CAS  Google Scholar 

  • Schrand AM, Huang HJ, Carlson C, Schlager J, Osawa E, Hussain S, Dai L (2007a) Are diamond nanoparticles cytotoxic? J Phys Chem B 111(1):2–7

    Article  CAS  Google Scholar 

  • Schrand AM, Dai L, Schlager JJ, Hussain SM, Osawa E (2007b) Differential biocompatibility of carbon nanotubes and nanodiamonds. Diam Relat Mater 16(2):2118–2123

    Article  CAS  Google Scholar 

  • Schrand AM, Johnson J, Dai L, Hussain SM, Schlager JJ, Zhu L, Hong Y, Osawa E (2008) Cytotoxicity and genotoxicity of carbon nanomaterials. In: Webster T (ed) Safety of nanoparticles: from manufacturing to clinical applications. Springer, Providence

    Google Scholar 

  • Schrand AM, Hens SAC, Shenderova OA (2009) Nanodiamond particles: properties and perspectives for bioapplications. Crit Rev Solid State Mater Sci 34:18–74

    Article  CAS  Google Scholar 

  • Shenderova OA, Hens SAC (2010) Detonation nanodiamond particles processing, modification and bioapplications, In Ho D (ed) Nanodiamonds: applications in biology and nanoscale medicine, Springer, New York, pp 79–116

  • Turner S, Lebedev OI, Shenderova O, Vlasov II, Verbeeck J, Van Tendeloo G (2009) Determination of size, morphology, and nitrogen impurity location in treated detonation nanodiamond by transmission electron microscopy. Adv Funct Mater 19(13):2116–2124

    Article  CAS  Google Scholar 

  • Ushizawa K, Sato Y, Mitsumory T, Machinami T, Ueda T, Ando T (2002) Covalent immobilization of DNA on diamond and its verification by diffuse reflectance infrared spectroscopy. Chem Phys Lett 351(1–2):105–108

    Article  CAS  Google Scholar 

  • Vaijayanthimala V, Tzeng YK, Chang HC, Li CL (2009) The biocompatibility of fluorescent nanodiamonds and their mechanism of cellular uptake. Nanotechnology 20(42):425103

    Article  Google Scholar 

  • Waring MJ (1965) Complex formation between ethidium bromide and nucleic acids. J Mol Biol 13(1):269–282

    Article  CAS  Google Scholar 

  • Xing Y, Dai L (2009) Nanodiamonds for nanomedicine. Nanomedicine 4(2):207–218

    Article  CAS  Google Scholar 

  • Yang W, Auciello O, Butler JE, Cai W, Carlisle JA, Gerbi JE, Gruen DM, Knickerbocker T, Lasserter TL, Russell JN, Smith LM, Hamers RJ (2002) DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates. Nat Mater 1:253–257

    Article  CAS  Google Scholar 

  • Yeap WS, Tan YY, Loh KP (2008) Using Detonation nanodiamond for the specific capture of glycoproteins. Anal Chem 80(12):4659–4665

    Article  CAS  Google Scholar 

  • Yu SJ, Kang MW, Chang HC, Chen KM, Yu YC (2005) Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J Am Chem Soc 127(50):17604–17605

    Article  CAS  Google Scholar 

  • Yuan Y, Chen Y, Liu JH, Wang H, Liu Y (2009) Biodistribution and fate of nanodiamonds in vivo. Diam Relat Mater 18(1):95–100

    Article  CAS  Google Scholar 

  • Zhu Y, Li W, Li Q, Li Y, Li Y, Zhang X, Huang Q (2009) Effects of serum proteins on intracellular uptake and cytotoxicity of carbon nanoparticles. Carbon 47(5):1351–1358

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by the Materials World Network program of the National Science Foundation under Grant No DMR-0602906. O.S. acknowledges the partial support through Air Force Office of Scientific Research under grant N66001-04-1-8933. In addition, we thank V. Kuznetsov, of the Boreskov Institute of Catalysis, Novosibirsk for providing onion-like carbon samples, V. Vorobyev for providing NDW samples, Yury Gogotsi, Department of Materials Science and Engineering and Nanomaterials Group at Drexel University, for the BET analysis, Elaine Chuanzhen Zhou at the Analytical Instrumentation Facility for TOF–SIMS experiments and Zachary Fitzgerald, Department of Materials Science and Engineering at North Carolina State University for his modeling of the PI molecule. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzy-Jiun Mark Luo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 58 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gibson, N.M., Luo, TJ.M., Shenderova, O. et al. Electrostatically mediated adsorption by nanodiamond and nanocarbon particles. J Nanopart Res 14, 700 (2012). https://doi.org/10.1007/s11051-011-0700-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-011-0700-9

Keywords

Navigation