Skip to main content
Log in

Solution templating of Au and Ag nanoparticles by linear poly[2-(diethylamino)ethyl methacrylate]

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Linear poly[2-(diethylamino)ethyl methacrylate], poly(DEAMA), is an uncommon example of a homopolymer that can reduce salts of Au and Ag in solution to yield stable dispersions of nanoparticles (5–25 nm typical size). Poly(DEAMA)-stabilized Au and Ag nanoparticles were prepared in a mixture of water and 2-butoxyethanol, an amphiphilic organic solvent. The “loading ratio” (mole ratio of metal atoms to amines), a key parameter influencing particle size and clustering, was systematically varied. The size distribution and clustering of the nanoparticles were characterized by transmission electron microscopy and small-angle X–ray scattering. The maximum loading ratio achievable without inducing precipitation was approximately 0.3 for Au, but the maximum loading ratio for Ag was only about 0.04. The preparation of both Au and Ag nanoparticles in solution with a linear polymeric template illustrates that dendritic or hyperbranched architecture of the polymer is not a prerequisite for obtaining stable, non-aggregated dispersions. From a practical standpoint, poly(DEAMA) is an inexpensive template material that is readily immobilized on silica, which could facilitate development of novel, nanoparticle-based heterogeneous catalysts.

Table of content graphic and summary

TEM image and corresponding particle size distribution of poly(DEAMA)-stabilized gold nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aizawa M, Buriak JM (2007) Block copolymer templated chemistry for the formation of metallic nanoparticle arrays on semiconductor surfaces. Chem Mater 19(21):5090–5101

    Article  CAS  Google Scholar 

  • Aslam M, Fu L, Su M, Vijayamohanan K, Dravid VP (2004) Novel one-step synthesis of amine-stabilized aqueous colloidal gold nanoparticles. J Mater Chem 14(12):1795–1797

    Article  CAS  Google Scholar 

  • Bhargava SK, Booth JM, Agrawal S, Coloe P, Kar G (2005) Gold nanoparticle formation during bromoaurate reduction by amino acids. Langmuir 21(13):5949–5956

    Article  CAS  Google Scholar 

  • Burda C, Chen XB, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105(4):1025–1102

    Article  CAS  Google Scholar 

  • Carotenuto G, Nicolais L (2004) Synthesis and characterization of gold-based mesoscopic additives for polymers. Polym Int 53(12):2009–2014

    Article  CAS  Google Scholar 

  • Castner DG, Hinds K, Grainger DW (1996) X-ray photoelectron spectroscopy sulfur 2p study of organic thiol and disulfide binding interactions with gold surfaces. Langmuir 12(21):5083–5086

    Article  CAS  Google Scholar 

  • Cooper E, Leggett GJ (1998) Static secondary ion mass spectrometry studies of self-assembled monolayers: Influence of adsorbate chain length and terminal functional group on rates of photooxidation of alkanethiols on gold. Langmuir 14(17):4795–4801

    Article  CAS  Google Scholar 

  • Corma A, Garcia H (2008) Supported gold nanoparticles as catalysts for organic reactions. Chem Soc Rev 37(9):2096–2126

    Article  CAS  Google Scholar 

  • Crooks RM, Lemon BI, Sun L, Yeung LK, Zhao MQ (2001a) Dendrimer-encapsulated metals and semiconductors: synthesis, characterization, and applications. Dendrimers Iii Design Dimens Funct 212:81–135

    CAS  Google Scholar 

  • Crooks RM, Zhao MQ, Sun L, Chechik V, Yeung LK (2001b) Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc Chem Res 34(3):181–190

    Article  CAS  Google Scholar 

  • Feng C, Gu L, Yang D, Hu JH, Lu GL, Huang XY (2009a) Size-controllable gold nanoparticles stabilized by PDEAEMA-based double hydrophilic graft copolymer. Polymer 50(16):3990–3996

    Article  CAS  Google Scholar 

  • Feng C, Shen Z, Li YG, Gu LN, Zhang YQ, Lu GL, Huang XY (2009b) PNIPAM-b-(PEA-g-PDMAEA) double-hydrophilic graft copolymer: synthesis and its application for preparation of gold nanoparticles in aqueous media. J Polym Sci Pol Chem 47(7):1811–1824

    Article  CAS  Google Scholar 

  • Figlarz M, Fievet F, Lagier JP (1985) French Patent 8221483. Ref Type: Patent

  • Grohn F, Bauer BJ, Akpalu YA, Jackson CL, Amis EJ (2000) Dendrimer templates for the formation of gold nanoclusters. Macromolecules 33(16):6042–6050

    Article  Google Scholar 

  • Haruta M, Date M (2001) Advances in the catalysis of Au nanoparticles. Appl Catal A-Gen 222(1–2):427–437

    Article  CAS  Google Scholar 

  • Hashmi ASK, Hutchings GJ (2006) Gold catalysis. Angew Chem Int Ed 45(47):7896–7936

    Article  Google Scholar 

  • Hasmy A, Foret M, Pelous J, Jullien R (1993) Small-angle neutron-scattering investigation of short-range correlations in fractal aerogels: simulations and experiments. Phys Rev B 48(13):9345–9353

    Article  CAS  Google Scholar 

  • He JA, Valluzzi R, Yang K, Dolukhanyan T, Sung CM, Kumar J, Tripathy SK, Samuelson L, Balogh L, Tomalia DA (1999) Electrostatic multilayer deposition of a gold-dendrimer nanocomposite. Chem Mater 11(11):3268–3274

    Article  CAS  Google Scholar 

  • Hedden RC, Bauer BJ, Smith AP, Grohn F, Amis E (2002) Templating of inorganic nanoparticles by PAMAM/PEG dendrimer-star polymers. Polymer 43(20):5473–5481

    Article  CAS  Google Scholar 

  • Hoppe CE, Lazzari M, Pardinas-Blanco I, Lopez-Quintela MA (2006) One-step synthesis of gold and silver hydrosols using poly(N-vinyl-2-pyrrolidone) as a reducing agent. Langmuir 22(16):7027–7034

    Article  CAS  Google Scholar 

  • Hostetler MJ, Wingate JE, Zhong CJ, Harris JE, Vachet RW, Clark MR, Londono JD, Green SJ, Stokes JJ, Wignall GD, Glish GL, Porter MD, Evans ND, Murray RW (1998) Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size. Langmuir 14(1):17–30

    Article  CAS  Google Scholar 

  • Hutchings GJ, Brust M, Schmidbaur H (2008) Gold—an introductory perspective. Chem Soc Rev 37(9):1759–1765

    Article  CAS  Google Scholar 

  • Ishii T, Otsuka H, Kataoka K, Nagasaki Y (2004) Preparation of functionally PEGylated gold nanoparticles with narrow distribution through autoreduction of auric cation by alpha-biotinyl-PEG-block-[poly(2-(N,N-dimethylamino)ethyl methacrylate)]. Langmuir 20(3):561–564

    Article  CAS  Google Scholar 

  • Iwamoto M, Kuroda K, Zaporojtchenko V, Hayashi S, Faupel F (2003) Production of gold nanoparticles-polymer composite by quite simple method. Eur Phys J D 24(1–3):365–367

    Article  CAS  Google Scholar 

  • Jewrajka SK, Chatterjee U (2006) Block copolymer mediated synthesis of amphiphilic gold nanoparticles in water and an aqueous tetrahydrofuran medium: an approach for the preparation of polymer-gold nanocomposites. J Polym Sci Pol Chem 44(6):1841–1854

    Article  CAS  Google Scholar 

  • Karthikeyan B, Anija M, Philip R (2006) In situ synthesis and nonlinear optical properties of Au:Ag nanocomposite polymer films. Appl Phys Lett 88(5): 053104

    Google Scholar 

  • Kline SR (2006) Reduction and analysis of SANS and USANS data using IGOR Pro. J Appl Crystallogr 39:895–900

    Article  CAS  Google Scholar 

  • Knecht MR, Pacardo DB (2010) Employing high-resolution materials characterization to understand the effects of Pd nanoparticle structure on their activity as catalysts for olefin hydrogenation. Anal Bioanal Chem 397(3):1137–1155

    Article  CAS  Google Scholar 

  • Kuila BK, Garai A, Nandi AK (2007) Synthesis, optical, and electrical characterization of organically soluble silver nanoparticles and their poly(3-hexylthiophene) nanocomposites: enhanced luminescence property in the nanocomposite thin films. Chem Mater 19(22):5443–5452

    Article  CAS  Google Scholar 

  • Kumar SS, Joseph J, Phani KL (2007) Novel method for deposition of gold-prussian blue nanocomposite films induced by electrochemically formed gold nanoparticles: characterization and application to electrocatalysis. Chem Mater 19:4722–4730

    Article  CAS  Google Scholar 

  • Leff DV, Ohara PC, Heath JR, Gelbart WM (1995) Thermodynamic control of gold nanocrystal size—experiment and theory. J Phys Chem-US 99(18):7036–7041

    Article  CAS  Google Scholar 

  • Lentz DM, Rhoades AM, Pyles RA, Haider KW, Angelone MS, Hedden RC (2011) Combinatorial study of a gold nanoparticle infusion process in a polymer film. J Nanopart Res 13(10):4795–4808. doi:10.1007/s11051-011-0455-3

    Article  CAS  Google Scholar 

  • Liz-Marzan LM (2006) Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22:32–41

    Article  CAS  Google Scholar 

  • Marty JD, Martinez-Aripe E, Mingotaud AF, Mingotaud C (2008) Hyperbranched polyamidoamine as stabilizer for catalytically active nanoparticles in water. J Colloid Interf Sci 326(1):51–54

    Article  CAS  Google Scholar 

  • Miyamoto D, Oishi M, Kojima K, Yoshimoto K, Nagasaki Y (2008) Completely dispersible PEGylated gold nanoparticles under physiological conditions: modification of gold nanoparticles with precisely controlled PEG-b-polyamine. Langmuir 24(9):5010–5017

    Article  CAS  Google Scholar 

  • Newman JDS, Blanchard GJ (2006) Formation of gold nanoparticles using amine reducing agents. Langmuir 22(13):5882–5887

    Article  CAS  Google Scholar 

  • Newman JDS, Blanchard GJ (2007) Formation and encapsulation of gold nanoparticles using a polymeric amine reducing agent. J Nanopart Res 9(5):861–868

    Article  CAS  Google Scholar 

  • Niu YH, Crooks RM (2003) Dendrimer-encapsulated metal nanoparticles and their applications to catalysis. CR Chim 6(8–10):1049–1059

    Article  CAS  Google Scholar 

  • Ofir Y, Samanta B, Rotello VM (2008) Polymer and biopolymer mediated self-assembly of gold nanoparticles. Chem Soc Rev 37(9):1814–1823

    Article  CAS  Google Scholar 

  • Ramesh GV, Porel S, Radhakrishnan TP (2009) Polymer thin films embedded with in situ grown metal nanoparticles. Chem Soc Rev 38(9):2646–2656

    Article  CAS  Google Scholar 

  • Rieker T, Hanprasopwattana A, Datye A, Hubbard P (1999) Particle size distribution inferred from small-angle X-ray scattering and transmission electron microscopy. Langmuir 15(2):638–641

    Article  CAS  Google Scholar 

  • Roucoux A, Schulz J, Patin H (2002) Reduced transition metal colloids: a novel family of reusable catalysts? Chem Rev 102(10):3757–3778

    Article  CAS  Google Scholar 

  • Sakai T, Alexandridis P (2004) Single-step synthesis and stabilization of metal nanoparticles in aqueous pluronic block copolymer solutions at ambient temperature. Langmuir 20(20):8426–8430

    Article  CAS  Google Scholar 

  • Sangermano M, Yagci Y, Rizza G (2007) In situ synthesis of silver-epoxy nanocomposites by photoinduced electron transfer and cationic polymerization processes. Macromolecules 40(25):8827–8829

    Article  CAS  Google Scholar 

  • Sau TK, Pal A, Pal T (2001) Size regime dependent catalysis by gold nanoparticles for the reduction of eosin. J Phys Chem B 105(38):9266–9272

    Article  CAS  Google Scholar 

  • Schmidt PW, Kalliat M (1984) A simple approximation for calculating the small-angle X-ray and neutron-scattering from polydisperse samples of independently scattering uniform spheres. J Appl Crystallogr 17:27–32

    Google Scholar 

  • Scott RWJ, Wilson OM, Crooks RM (2005) Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles. J Phys Chem B 109(2):692–704

    Article  CAS  Google Scholar 

  • Selvakannan PR, Swami A, Srisathiyanarayanan D, Shirude PS, Pasricha R, Mandale AB, Sastry M (2004) Synthesis of aqueous Au core–Ag shell nanoparticles using tyrosine as a pH-dependent reducing agent and assembling phase-transferred silver nanoparticles at the air-water interface. Langmuir 20(18):7825–7836

    Article  CAS  Google Scholar 

  • Selvan ST, Hayakawa T, Nogami M, Moller M (1999) Block copolymer mediated synthesis of gold quantum dots and novel gold-polypyrrole nanocomposites. J Phys Chem B 103(35):7441–7448

    Article  CAS  Google Scholar 

  • Shan J, Tenhu H (2007) Recent advances in polymer protected gold nanoparticles: synthesis, properties and applications. Chem Commun (44): 4580–4598

  • Sih BC, Wolf MO (2005) Metal nanoparticle—conjugated polymer nanocomposites. Chem Commun (27): 3375–3384

  • Silvert PY, Herrera-Urbina R, Tekaia-Elhsissen K (1997) Preparation of colloidal silver dispersions by the polyol process. 2. Mechanism of particle formation. J Mater Chem 7(2):293–299

    Article  CAS  Google Scholar 

  • Sohn BH, Seo BH (2001) Fabrication of the multilayered nanostructure of alternating polymers and gold nanoparticles with thin films of self-assembling diblock copolymers. Chem Mater 13(5):1752–1757

    Article  CAS  Google Scholar 

  • Subramaniam C, Tom RT, Pradeep T (2005) On the formation of protected gold nanoparticles from AuCl4–by the reduction using aromatic amines. J Nanopart Res 7(2):209–217

    Article  CAS  Google Scholar 

  • Sun LM, Gardella JA (2002) Oxidation-assisted secondary ion mass spectrometry methodology to quantify mixed alkylthiol self-assembled monolayers on gold: applications to competitive chemical adsorption. Langmuir 18(24):9289–9295

    Article  CAS  Google Scholar 

  • Sun XP, Jiang X, Dong SJ, Wang EK (2003) One-step synthesis and size control of dendrimer-protected gold nanoparticles: a heat-treatment-based strategy. Macromol Rapid Commun 24(17):1024–1028

    Article  CAS  Google Scholar 

  • Uchida M, Klem MT, Allen M, Suci P, Flenniken M, Gillitzer E, Varpness Z, Liepold LO, Young M, Douglas T (2007) Biological containers: protein cages as multifunctional nanoplatforms. Adv Mater 19(8):1025–1042

    Article  CAS  Google Scholar 

  • Ueno T, Suzuki M, Goto T, Matsumoto T, Nagayama K, Watanabe Y (2004) Size-selective olefin hydrogenation by a Pd nanocluster provided in an apo-ferritin cage. Angew Chem Int Ed 43(19):2527–2530

    Article  CAS  Google Scholar 

  • Vasylyev MV, Maayan G, Hovav Y, Haimov A, Neumann R (2006) Palladium nanoparticles stabilized by alkylated polyethyleneimine as aqueous biphasic catalysts for the chemoselective stereocontrolled hydrogenation of alkenes. Org Lett 8:5445–5448

    Article  CAS  Google Scholar 

  • Wiley B, Sun YG, Mayers B, Xia YN (2005) Shape-controlled synthesis of metal nanostructures: the case of silver. Chem Eur J 11(2):454–463

    Article  CAS  Google Scholar 

  • Wilson R (2008) The use of gold nanoparticles in diagnostics and detection. Chem Soc Rev 37(9):2028–2045

    Article  CAS  Google Scholar 

  • Wu T, Zhang YF, Wang XF, Liu SY (2008) Fabrication of hybrid silica nanoparticles densely grafted with thermoresponsive poly(N-isopropylacrylamide) brushes of controlled thickness via surface-initiated atom transfer radical polymerization. Chem Mater 20(1):101–109

    Article  CAS  Google Scholar 

  • Yam VWW, Cheng ECC (2008) Highlights on the recent advances in gold chemistry—a photophysical perspective. Chem Soc Rev 37(9):1806–1813

    Article  CAS  Google Scholar 

  • Yuan JJ, Schmid A, Armes SP, Lewis AL (2006) Facile synthesis of highly biocompatible poly[2-(methacryloyloxy)ethyl phosphorylcholine]-coated gold nanoparticles in aqueous solution. Langmuir 22(26):11022–11027

    Article  CAS  Google Scholar 

  • Zhao MQ, Crooks RM (1999a) Homogeneous hydrogenation catalysis with monodisperse, dendrimer-encapsulated Pd and Pt nanoparticles. Angew Chem Int Ed 38(3):364–366

    Article  CAS  Google Scholar 

  • Zhao MQ, Crooks RM (1999b) Dendrimer-encapsulated Pt nanoparticles: synthesis, characterization, and applications to catalysis. Adv Mater 11(3):217–220

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Mark Angelone of Penn State University for assistance with the SAXS measurements. The authors are grateful to Charlie Linch of Texas Tech University for assistance with TEM imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald C. Hedden.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 550 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H., Lentz, D.M. & Hedden, R.C. Solution templating of Au and Ag nanoparticles by linear poly[2-(diethylamino)ethyl methacrylate]. J Nanopart Res 14, 690 (2012). https://doi.org/10.1007/s11051-011-0690-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-011-0690-7

Keywords

Navigation