Advertisement

Aerosols emitted by the combustion of polymers containing nanoparticles

  • C. Motzkus
  • C. Chivas-Joly
  • E. Guillaume
  • S. Ducourtieux
  • L. Saragoza
  • D. Lesenechal
  • T. Macé
  • J.-M. Lopez-Cuesta
  • C. Longuet
Research Paper

Abstract

The fire behavior and the characterization of solid and gaseous fire effluents of polymers [polymethyl methacrylate (PMMA) and polyamide-6 (PA-6)] filled with nanoparticles (silica, alumina, and carbon nanotubes) used to improve their flame retardancy were investigated. To determine the impact of these composites on the emission of airborne particles produced during their combustion in accidental fire scenarios, an experimental setup was developed to measure the mass distribution in the 30 nm–10 μm range, and the concentrations of submicrometric particles in the aerosol. Comparisons were made between unfilled and filled polymers, and the influence of filler surface treatments (silane-based), as well as combinations with a flame retardant [ammonium polyphosphate (APP)], was investigated. The presence of nano-oxides in PMMA shows a significant effect on the rate of particle emission with a decrease in the concentration of the emitted submicrometric particles. APP in PMMA led to a decrease in the mass fraction of ultrafine particles and an increase in the rate of submicrometric particle emission compared to filled compositions with nano-oxides. Atomic force microscopy was used as a complementary tool for the characterization of the particles emitted during combustion, allowing direct observation of nanoparticle morphology, detection of carbon nanotubes in the aerosol, and visualization of the effect of APP on nanoparticle morphology.

Keywords

Nanocomposites Combustion Aerosol Nanoparticles Emission Polymer Environmental and health effects 

Notes

Acknowledgments

The authors are grateful to the French Research Agency (ANR) for the financial support provided to the NANOFEU project. The authors owe their thanks to Dr François Xavier OUF, and Dr François GENSDARMES of the Aerosol Physics and Metrology Laboratory of IRSN (The French Institute for Radiological Protection and Nuclear Safety) for their help in the implementation of the dilution system. The authors are grateful to all the NanoFeu partners (EMA, ISMANS, INERIS, and PlasticsEurope) and acknowledge their collaboration in this project. The authors would like to thank Digital Surf SARL for making Digital Surf’s MountainsMap licenses available within the framework of the Digital Surf’s Mount Shasta technical cooperation program.

References

  1. Baron P, Willeke K (2001) Aerosol measurement—principles, techniques, and applications, Chap 3. Wiley, New York, pp 50–51Google Scholar
  2. Chivas-Joly C, Guillaume E, Ducourtieux S, Saragoza L, Lesenechal D, Lopez-Cuesta JM, Longuet C, Duplantier S, Sonnier R, Bertrand JP, Calogine D, Minisini BD, Parisse D (2010) Influence of carbon nanotubes on fire behavior and on decomposition products of thermoplastic polymers. In: INTERFLAM 2010, Nottingham, pp 1375–1386Google Scholar
  3. Cullen RT, Tran CL, Buchanan D, Davis JM, Searl A, Jones AD, Donalson K (2000) Inhalation of poorly soluble particles. I. Differences in inflammatory response and clearance during exposure. Inhal Toxicol 12(12):1089–1111CrossRefGoogle Scholar
  4. Dong Y, Hays MD, Smith ND, Kinsey JS (2004) Inverting cascade impactor data for size-resolved characterization of fine particulate source emissions. J Aerosol Sci 35:1497–1512Google Scholar
  5. Friederich B, Laachachi A, Ferriol M, Ruch D, Cochez M, Toniazzo V (2010) Tentative links between thermal diffusivity and fire-retardantproperties in poly(methylmethacrylate)emetal oxidenanocomposites. Polym Degrad Stab 95:1183–1193CrossRefGoogle Scholar
  6. Gilman JW (1999) Flammability and thermal stability studies of polymer layered-silicate clay/nanocomposites. Appl Clay Sci 15:31–49CrossRefGoogle Scholar
  7. Hinds W (1999) Aerosol technology—properties, behavior, and measurement of airborne particles, Chap 13, 2nd edn. Wiley, New York, pp 292–294Google Scholar
  8. Hu YH, Chen CY, Wang CC (2004) Viscoelastic properties and thermal degradation kinetics of silica/PMMA nanocomposites. Polym Degrad Stab 84:545–553CrossRefGoogle Scholar
  9. ISO 5660-1 (2002) Reaction to fire tests—heat release, smoke production and mass loss rate—part 1: heat release rate (cone calorimeter method)Google Scholar
  10. ISO/DIS 29904 (2012) Fire chemistry—aerosols generation and measurementGoogle Scholar
  11. Jash P, Wilkie CA (2005) Effects of surfactants on the thermal and fire properties of poly(methyl methacrylate)/clay nanocomposites. Polym Degrad Stab 88:401–406CrossRefGoogle Scholar
  12. Lam CW, James JT, McCluskey R, Hunter RLX (2004) Pulmonary toxicity of single wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77(1):126–134CrossRefGoogle Scholar
  13. Lamminen E, Mikkanen P, Ojanen J (2003) Sampling parameter & performance evaluation during controlled dilution of diesel exhaust. EAC 2003, abstract and poster, MadridGoogle Scholar
  14. Lamminen E, Mikkanen P, Ojanen J, Vaaraslahti K, Keskinen J (2005) Sampling and engine after-treatment effect on diesel exhaust-particle size distributions. SAE 2005-01-0192Google Scholar
  15. Le Tallec Y, Saragoza L, Hertzberg T, Blomqvist P (2004) Particles from fire: evaluation of the particulate fraction in fire effluents using the cone calorimeter. In: Proceedings of 10th INTERFLAM 2010, NottinghamGoogle Scholar
  16. Marinovic-Cincovic M, Popovic MC, Novakovic MM, Nedeljkovic JM (2007) The influence of b-FeOOH nanorods on the thermal stability of poly(methyl methacrylate). Polym Degrad Stab 92:70–74CrossRefGoogle Scholar
  17. Marjamäki M, Lemmetty M, Keskinen J (2005) ELPI response and data reduction I: response functions. Aerosol Sci Technol 39:575–582CrossRefGoogle Scholar
  18. Maynard AD (2006) Nanotechnology: managing the risks. Nanotoday 2:22–32Google Scholar
  19. Minisini B, Tsobnang F (2008) NANOFEU ANR-07-NANO-042-04 Rapport semestriel d’avancement de l’ISMANS N°1, Etude bibliographique sur les nanotubes de carbonesGoogle Scholar
  20. Morgan AB (2010) Polymer nanocomposite flammability and flame retardancy, chap 5. In: Lau AK-T, Hussain F, Lafdi K (eds) Nano-and biocomposites. CRC Press, Boca Raton, pp 107–136Google Scholar
  21. Motzkus C, Chivas-Joly C, Guillaume E, Ducourtieux S, Saragoza L, Lesenechal D, Macé T (2010) Characterization of aerosol emitted by the combustion of nanocomposites. In: Conference NanoSafe 2010, GrenobleGoogle Scholar
  22. Ntziachristos L, Giechaskiel B, Pistikopoulos P, Samaras Z, Mathis U, Mohr M, Ristimäki J, Keskinen J, Mikkanen P, Casati R, Scheer V, Vogt R (2004) Performance evaluation of a novel sampling and measurement system for exhaust particle characterization. SAE Technical Paper No. 2004-01-1439Google Scholar
  23. Nyden MR, Harris RH, Kim YS, Davis RD, Marsh ND, Zammarano M (2009) Characterizing particle emissions from burning polymer nanocomposites. In: Nanotech 2009, HoustonGoogle Scholar
  24. Nyden MR, Zammarano M, Harris RH, Krammer R, Uddin NM, Marsh ND (2010) Characterizing particle emissions from burning polymer nanocomposites. In: INTERFLAM 2010, NottinghamGoogle Scholar
  25. Ouf F-X (2006) Caractérisation des aérosols émis lors d’un incendie. Thesis, University of RouenGoogle Scholar
  26. Pieters (2006) NanoSEE (nanomaterial industry status an expected evolution) report from Yole Development, reportGoogle Scholar
  27. Renoux A, Boulaud D (1998) Les aérosols. Physique et Métrologie. Ed Lavoisier, Technique et Documentation, ParisGoogle Scholar
  28. Renwick LC, Brown D, Clouter A, Donalson K (2004) Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particles types. Occup Environ Med 61(5):442–447CrossRefGoogle Scholar
  29. Sahoo PK, Samal R (2007) Fire retardancy and biodegradability of poly(methyl methacrylate)/montmorillonite nanocomposite. Polym Degrad Stab 92:1700–1707CrossRefGoogle Scholar
  30. Schvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI et al (2005) Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 289(5):L698–L708CrossRefGoogle Scholar
  31. Seinfield J, Pandis S (1998) Atmospheric chemistry and physics. Wiley, New York, p 1326Google Scholar
  32. Sem GJ (2002) Design and performance characteristics of three continuous-flow condensation particle counters: a summary. Atmos Res 62:267–294CrossRefGoogle Scholar
  33. Turner JR, Hering SV (1987) Greased and oiled substrates as bounce free impaction surfaces. J Aerosol Sci 18:215–224CrossRefGoogle Scholar
  34. Vaaraslahti K, Virtanen A, Ristimäki J, Keskinen J (2004) Effect of after-treatment systems on size distribution of heavy duty diesel exhaust aerosol. SAE 2004-01-1980Google Scholar
  35. Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GA, Webb TR (2004) Comparative pulmonary toxicity assessment of single wall carbon nanotubes in rats. Toxicol Sci 77(1):117–125CrossRefGoogle Scholar
  36. Xu Y, Brittain WJ, Xue C, Eby RK (2004) Effect of clay type on morphology and thermal stability of PMMA–clay nanocomposites prepared by heterocoagulation method. Polymer 45:3735–3746CrossRefGoogle Scholar
  37. Zhu J, Start P, Mauritz KA, Wilkie CA (2002) Thermal stability and flame retardancy of poly(methyl methacrylate)-clay nanocomposites. Polym Degrad Stab 77:253–258CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • C. Motzkus
    • 1
  • C. Chivas-Joly
    • 1
  • E. Guillaume
    • 1
  • S. Ducourtieux
    • 1
  • L. Saragoza
    • 1
  • D. Lesenechal
    • 1
  • T. Macé
    • 1
  • J.-M. Lopez-Cuesta
    • 2
  • C. Longuet
    • 2
  1. 1.LNETrappes CedexFrance
  2. 2.CMGD, Ecole des Mines d’AlèsAlès CedexFrance

Personalised recommendations