Synthesis and characterisation of highly fluorescent core–shell nanoparticles based on Alexa dyes

  • Kishore Natte
  • Thomas Behnke
  • Guillermo Orts-Gil
  • Christian Würth
  • Jörg F. Friedrich
  • Werner Österle
  • Ute Resch-Genger
Research Paper


Current and future developments in the emerging field of nanobiotechnology are closely linked to the rational design of novel fluorescent nanomaterials, e.g. for biosensing and imaging applications. Here, the synthesis of bright near infrared (NIR)-emissive nanoparticles based on the grafting of silica nanoparticles (SNPs) with 3-aminopropyl triethoxysilane (APTES) followed by covalent attachment of Alexa dyes and their subsequent shielding by an additional silica shell are presented. These nanoparticles were investigated by dynamic light scattering (DLS), transmission electron microscopy (TEM) and fluorescence spectroscopy. TEM studies revealed the monodispersity of the initially prepared and fluorophore-labelled silica particles and the subsequent formation of raspberry-like structures after addition of a silica precursor. Measurements of absolute fluorescence quantum yields of these scattering particle suspensions with an integrating sphere setup demonstrated the influence of dye labelling density-dependent fluorophore aggregation on the signaling behaviour of such nanoparticles.


Silica Alexa dyes Fluorescent particles Quantum yields Nanoparticles Protective shell Nanobiotechnology 



This study has been supported by the Federal Institute for Materials Research and Testing (BAM) within the framework of its ‘Innovationsoffensive’ under the Project name ‘Nanotox’ and by the Federal Ministry of Economics and Technology (BMWI-22/06). The authors also thank G. Hidde and I. Dörfel for excellent technical and analytical assistance.

Supplementary material

11051_2011_680_MOESM1_ESM.doc (138 kb)
Supplementary material 1 (DOC 138 kb)


  1. Aslan K, Wu M, Lakowicz RJ, Geddes DC (2007) Fluorescent Core − Shell Ag@SiO2 Nanocomposites for Metal-enhanced fluorescence and single nanoparticle sensing platforms. J Am Chem Soc 129:1524–1525CrossRefGoogle Scholar
  2. Bargeron BC (1974) Analysis of intensity correlation spectra of mixtures of polystyrene latex spheres: a comparison of direct least squares fitting with the method of cumulants. J Chem Phys 60:2516–2519CrossRefGoogle Scholar
  3. Benezra M, Penate-Medina O, Zanzonico BP, Schaer D, Ow H, Burns A, DeStanchina E, Longo V, Herz E, Iyer S, Wolchok J, Larson MS, Wiesner U, Bradbury SM (2011) Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J Clin Invest 121:2768–2780CrossRefGoogle Scholar
  4. Bergna HE, Roberts OW (2006) Colloidal Silica: fundamentals and applications CRC Press. Taylor & Francis Group: Boca Raton 131:895Google Scholar
  5. Berlier JE, Rothe A, Buller G, Bradford J, Gray DR, Filanosk BJ, Telford WG, Yue S, Liu J, Cheung C-Y, Chang W, Hirsch JD, Beechem JM, Haugland RP, Haugland RP (2003) Quantitative comparison of long-wavelength Alexa Fluor dyes to Cy dyes: fluorescence of the dyes and their bioconjugates. Journal of Histochemistry & Cytochemistry 51(12):1179–1188CrossRefGoogle Scholar
  6. Blaaderen AV, Vrij A (1993) Synthesis and characterization of monodisperse colloidal organo-silica spheres. J Colloid Interface Sci 156:1–18CrossRefGoogle Scholar
  7. Bringley FB, Penner LP, Wang R, Harder FJ, Harrison JW, Buonemani L (2008) Silica nanoparticles encapsulating near-infrared emissive cyanine dyes. J Colloid Interface Sci 320:132–139CrossRefGoogle Scholar
  8. Burns A, Ow H, Wiesner U (2006a) Fluorescent core–shell silica nanoparticles: towards ‘‘Lab on a Particle’’ architectures for nanobiotechnology. Chem Soc Rev 35:1028–1042CrossRefGoogle Scholar
  9. Burns A, Sengupta P, Zedayko T, Baird B, Wiesner U (2006b) Core/shell fluorescent silica nanoparticles for chemical sensing: towards single-particle laboratories. Small 2:723–726CrossRefGoogle Scholar
  10. Changfeng W, Craig S, Jason M (2006) Preparation and encapsulation of highly fluorescent conjugated polymer nanoparticles. Langmuir 22:2956–2960CrossRefGoogle Scholar
  11. Edwards SB, Tudor O, Prossnitz RE, Sklar AL (2004) Flow cytometry for high-throughput, high-content screening. Curr Opin Chem Biol 8:392–398CrossRefGoogle Scholar
  12. Estephan GZ, Jaber AJ, Schlenoff BJ (2010) Zwitterion-stabilized silica nanoparticles: toward nonstick nano. Langmuir 26:16884–16889CrossRefGoogle Scholar
  13. Ethiraj SA, Kharrazi S, Hebalkar N, Urban J, Sainkar RS, Kulkarni KS (2007) Highly photostable dye entrapped core–shell particles. Mater Lett 61:4738–4742CrossRefGoogle Scholar
  14. Grabolle M, Spieles M, Lesnyak V, Gaponik N, Eychmüller A, Resch-Genger U (2009) Determination of the fluorescence quantum yield of quantum dots: suitable procedures and achievable uncertainties. Anal Chem 81:6285–6294CrossRefGoogle Scholar
  15. Graf P, Mantion A, Haase A, Thünemann FA, Masic A, Meier W, Luch A, Taubert A (2011) Silicification of peptide-coated silver nanoparticles—a biomimetic soft chemistry approach toward chiral hybrid core − shell materials. ACS NANO 5:820–833CrossRefGoogle Scholar
  16. Härmä H (2002) Particle technologies in diagnostics technology review. TEKES, National Technology Agency 126Google Scholar
  17. Herz E, Ow H, Bonner D, Burnsa A, Wiesner U (2009) Dye structure–optical property correlations in near-infrared fluorescent core-shell silica nanoparticles. J Mater Chem 19:6341–6347CrossRefGoogle Scholar
  18. Herz E, Marchincin T, Connelly L, Bonner D, Burns A, Switalski S, Wiesner U (2010) Relative quantum yield measurements of coumarin encapsulated in core-shell silica nanoparticles. J Fluoresc 20:67–72CrossRefGoogle Scholar
  19. Johansson MK, Cook RM (2003) Intramolecular dimers: a new design strategy for fluorescence-quenched probes. Chem Eur J 9:3466–3471CrossRefGoogle Scholar
  20. Kind L, Plamper FA, Göbel R, Mantion A, Müller EHA, Pieles U, Taubert A, Meier W (2009) Silsesquioxane/polyamine nanoparticle-templated formation of star- or raspberry-like silica nanoparticles. Langmuir 25:7109–7115CrossRefGoogle Scholar
  21. Langhals H, Esterbauer JA (2009) Fluorescent silica nanoparticles by silylation. Chem Eur J 15:4793–4796CrossRefGoogle Scholar
  22. Larson DR, Ow H, Vishwasrao HD, Heikal AA, Wiesner U, Webb WW (2008) Silica nanoparticle architecture determines radiative properties of encapsulated fluorophores. Chem Mater 20:2677–2684CrossRefGoogle Scholar
  23. Lee EJ, Lee N, Kim T, Kim J, Hyeon T (2011) Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc Chem Res 44:893–902CrossRefGoogle Scholar
  24. Liz-Marzan L, Michael G, Paul M (1996) Synthesis of nanosized gold − silica core − shell particles. Langmuir 12:4329–4335CrossRefGoogle Scholar
  25. Martini M, Montagna M, Ou M, Tillement O, Roux S, Perriat P (2009) How to measure quantum yields in scattering media: application to the quantum yield measurement of fluorescein molecules encapsulated in sub-100 nm silica particles. J Appl Phys 106:094304CrossRefGoogle Scholar
  26. Meldal M (2002) The one-bead two-compound assay for solid phase screening of combinatorial libraries. Biopolymers 66:93–100CrossRefGoogle Scholar
  27. Miletto I, Gilardino A, Zamburlin P, Dalmazzo S, Lovisolo D, Caputo G, Viscard G, Martra G (2010) Highly bright and photostable cyanine dye-doped silica nanoparticles for optical imaging: photophysical characterization and cell tests. Dyes Pigments 84:121–127CrossRefGoogle Scholar
  28. Murdock CR, Braydich-Stolle L, Schrand MA, Schlager JJ, M. Hussain MS (2008) Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 101:239–253Google Scholar
  29. Nataliya P-V, Rosaria PH, Janell B-S, Mahesh KB, Paul JM, Fei M, Wai-Y L, Richard PH (1999) Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates. J Histochem Cytochem 47:1179–1188CrossRefGoogle Scholar
  30. Nooney IR, McCahey NMC, Stranik O, Guevel LX, McDonagh C, MacCraith DB (2009) Experimental and theoretical studies of the optimisation of fluorescence from near-infrared dye-doped silica nanoparticles. Anal Bioanal Chem 393:1143–1149CrossRefGoogle Scholar
  31. Orts-Gil G, Losik M, Schlaad H, Drechsler M, Hellweg T (2008) Properties of pH-responsive mixed aggregates of polystyrene-block-poly(l-lysine) and nonionic surfactant in solution and adsorbed at a solid surface. Langmuir 24:12823–12828CrossRefGoogle Scholar
  32. Ow H, Larson RD, Srivastava M, Baird AB, Webb WW, Weisner U (2005) Bright and stable core − shell fluorescent silica nanoparticles. Nano Lett 5:113–117CrossRefGoogle Scholar
  33. Pyrz DW, Buttrey JD (2008) Particle size determination using TEM: a discussion of image acquisition and analysis for the novice microscopist. Langmuir 24:11350–11360CrossRefGoogle Scholar
  34. Resch-Genger U, Pfeifer D, Monte C, Pilz W, Hoffmann A, Spieles M, Rurack K, Hollandt J, Taubert D, Schonenberger B, Nording P (2005) Traceability in fluorometry: part II. Spectral fluorescence standards. J Fluoresc 15:315–336CrossRefGoogle Scholar
  35. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5:763–775CrossRefGoogle Scholar
  36. Russin JT, Altinoglu IE, Adair HJ, Eklund CP (2010) Measuring the fluorescent quantum efficiency of indocyanine green encapsulated in nanocomposite particulates. J Phys Condens Matter 22:334217CrossRefGoogle Scholar
  37. Schiestel T, Brunner H, Tovar MEG (2004) Controlled surface functionalization of silica nanospheres by covalent conjugation reactions and preparation of high density streptavidin nanoparticles. J Nanosci Nanotechnol 4:504–511CrossRefGoogle Scholar
  38. Schobel U, Egelhaaf H-J, Brecht A, Oelkrug D, Gauglitz G (1999) New donor − acceptor pair for fluorescent immunoassays by energy transfer. Bioconjug Chem 10:1107–1114CrossRefGoogle Scholar
  39. Schulz-Ekloff G, Wöhrle D, Duffel VB, Schoonheydt AR (2002) Chromophores in porous silicas and minerals: preparation and optical properties. Microporous and Mesoporous Mater 51:91–138CrossRefGoogle Scholar
  40. Sokolov I, Naik S (2008) Novel fluorescent silica nanoparticles: towards ultrabright silica nanoparticles. Small 4:934–939CrossRefGoogle Scholar
  41. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69CrossRefGoogle Scholar
  42. Sun G, Berezin MY, Fan J, Lee H, Ma J, Zhang K, Wooley KL, Achilefu S (2010) Bright fluorescent nanoparticles for developing potential optical imaging contrast agents. Nanoscale 2:548–558CrossRefGoogle Scholar
  43. Thomassen JCL, Aerts A, Rabolli V, Lison D, Gonzalez L, Kirsch-Volders M, Napierska D, Hoet HP, Kirschhock AEC, Martens AJ (2010) Synthesis and characterization of stable monodisperse silica nanoparticle sols for in vitro cytotoxicity testing. Langmuir 26:328–335CrossRefGoogle Scholar
  44. Vasilis N, Christoph B, Ralph W (2003) Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur Radiol 13:195–208Google Scholar
  45. Wang L, Chaoyong Y, Weihong T (2005) Dual-luminophore-doped silica nanoparticles for multiplexed signaling. Nano Lett 5:37–43CrossRefGoogle Scholar
  46. Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19(4):316–317CrossRefGoogle Scholar
  47. Würth C, Lochmann C, Spieles M, Pauli J, Hoffmann K, Schuttrigkeit T, Franzl T, Resch-Genger U (2009) Evaluation of a commercial integrating sphere setup for the determination of absolute photoluminescence quantum yields of dilute dye solutions. Appl Spectroscopy 64:733–741CrossRefGoogle Scholar
  48. Würth C, Grabolle M, Pauli J, Spieles M, Resch-Genger U (2011) Comparison of methods and achievable uncertainties for the relative and absolute measurement of photoluminescence quantum yields. Anal Chem 83(9):3431–3439Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Kishore Natte
    • 1
  • Thomas Behnke
    • 2
  • Guillermo Orts-Gil
    • 1
  • Christian Würth
    • 2
  • Jörg F. Friedrich
    • 1
  • Werner Österle
    • 1
  • Ute Resch-Genger
    • 2
  1. 1.BAM Federal Institute for Materials Research and TestingBerlinGermany
  2. 2.BAM Federal Institute for Materials Research and TestingBerlinGermany

Personalised recommendations