One-pot synthesis of gold/poly(3,4-ethylendioxythiophene) nanocomposite

  • E. Ventosa
  • A. Colina
  • A. Heras
  • V. Ruiz
  • J. Garoz
  • J. López-Palacios
Research Paper


In this paper, we report the preparation of highly stable gold nanoparticles/poly(3,4-ethylendioxythiophene) nanocomposites by a one-pot chemical route in aqueous medium without surfactants to increase the solubility of the monomer (3,4-ethylendioxythiophene, EDOT) or to stabilize gold nanoparticles (Au NPs). The generation of the nanocomposite was followed by UV–Visible transmission spectroscopy combined with multivariate curve resolution alternating least squares analysis to deconvolute the individual spectra of the different species generated in the synthesis: oligomers, polymer and gold nanoparticles. The plasmon band observed at 530 nm during the synthesis step indicates the generation of gold nanoparticles. The influence of monomer and metal precursor concentration and their concentration ratios on Au NP size were analyzed. The electrochromic properties of the composite were investigated by UV–Visible absorption spectroelectrochemistry, being mainly related to polymer oxidation and reduction. The main difference observed is the hypsochromic shift of the polymer spectra due to the gold nanoparticles inside the polymer. Multicyclic spectroelectrochemical experiments evidence a high stability and adhesion of the nanocomposite.


Conducting polymers PEDOT Gold nanoparticles Electrochemistry Spectroelectrochemistry Nanocomposites 



Support from Ministerio de Ciencia y Tecnología (CTQ2010-17127, V.R. Programa Ramón y Cajal), Junta de Castilla y León (GR71, BU006A09, BU012A09), COST Action D36 (WG D36-0005-06) and Academy of Finland (V.R. Academy Research Fellow) is gratefully acknowledged. Aalto University (Finland), PCT of Burgos University (Spain), ICTS of Complutense University of Madrid (Spain) are also acknowledged for electron microscope images.


  1. Abu-Salah KM, Alrokyan SA, Khan MN, Ansari AA (2010) Nanomaterials as analytical tools for genosensors. Sensors 10:963–993CrossRefGoogle Scholar
  2. Ahonen HJ, Lukkari J, Hellström T, Mattila J, Kankare J (2001) Characterisation of poly(3,4-ethylenedioxythiophene) films polymerised in aqueous media. Synth Met 119:119–120CrossRefGoogle Scholar
  3. Balazs AC, Emrick T, Russell TP (2006) Nanoparticle polymer composites: where two small worlds meet. Science 314:1107–1110CrossRefGoogle Scholar
  4. Biallozor S, Kupniewska A, Jasulaitene V (2003) Electro-oxidation of methanol and ethanol on poly(3,4-ethylenedioxythiophene) with dispersed Pt, Pt + Sn, and Pt + Pb particles. Fuel Cells 3:8–14CrossRefGoogle Scholar
  5. Breimer MA, Yevgeny G, Sy S, Sadik OA (2001) Incorporation of metal nanoparticles in photopolymerized organic conducting polymers: a mechanistic insight. Nano Lett 1:305–308CrossRefGoogle Scholar
  6. Chen X, Zhao D, An Y, Shi L, Hou W, Chen L (2010) Catalytic properties of gold nanoparticles immobilized on the surfaces of nanocarriers. J Nanopart Res 12:1877–1887CrossRefGoogle Scholar
  7. Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D’Alessio M, Zambonin PG, Traversa E (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17:5255–5262CrossRefGoogle Scholar
  8. Cobley CM, Skrabalak SE, Campbell DJ, Xia Y (2009) Shape-controlled synthesis of silver nanoparticles for plasmonic and sensing applications. Plasmonics 4:171–179CrossRefGoogle Scholar
  9. Coto-García AM, Sotelo-González E, Fernández-Argüelles MT, Pereiro R, Costa-Fernández JM, Sanz-Medel A (2011) Nanoparticles as fluorescent labels for optical imaging and sensing in genomics and proteomics. Anal Bioanal Chem 399:29–42CrossRefGoogle Scholar
  10. Cuenya BR (2010) Synthesis and catalytic properties of metal nanoparticles: size, shape, support, composition, and oxidation state effects. Thin Solid Films 518:3127–3150CrossRefGoogle Scholar
  11. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346CrossRefGoogle Scholar
  12. Duluard S, Ouvrard B, Celik-Cochet A, Campet G, Posset U, Schottner G, Delville MH (2010) Comparison of PEDOT films obtained via three different routes through spectroelectrochemistry and the differential cyclic voltabsorptometry method (DCVA). J Phys Chem B 114:7445–7451CrossRefGoogle Scholar
  13. El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34:257–264CrossRefGoogle Scholar
  14. Feldheim DL, Colby AF Jr (2002) Metal nanoparticles: synthesis, characterization and applications. Marcel Dekker New YorkGoogle Scholar
  15. Gangopadhyay R, De A (2000) Conducting polymer nanocomposites: a brief overview. Chem Mater 12:608–622CrossRefGoogle Scholar
  16. Guo L, Peng Z (2008) One-pot synthesis of carbon nanotube-polyaniline-gold nanoparticle and carbon nanotube-gold nanoparticle composites by using aromatic amine chemistry. Langmuir 24:8971–8975CrossRefGoogle Scholar
  17. Gustafsson JC, Liedberg B, Inganas O (1994) In situ spectroscopic investigations of electrochromism and ion transport in a poly (3,4-ethylenedioxythiophene) electrode in a solid state electrochemical cell. Solid State Ionics 69:145–152CrossRefGoogle Scholar
  18. Harish S, Mathiyarasu J, Phani KLN, Yegnaraman V (2009) Synthesis of conducting polymer supported Pd nanoparticles in aqueous medium and catalytic activity towards 4-nitrophenol reduction. Catal Lett 128:197–202CrossRefGoogle Scholar
  19. Huang H, Yang X (2005) One-step, shape control synthesis of gold nanoparticles stabilized by 3-thiopheneacetic acid. Colloids Surf A 255:11–17CrossRefGoogle Scholar
  20. Janata J, Josowicz M (2003) Conducting polymers in electronic chemical sensors. Nat Mater 2:19–24CrossRefGoogle Scholar
  21. Jaumot J, Gargallo R, De Juan A, Tauler R (2005) A graphical user-friendly interface for MCR-ALS: a new tool for multivariate curve resolution in MATLAB. Chemom Intell Lab Syst 76:101–110CrossRefGoogle Scholar
  22. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677CrossRefGoogle Scholar
  23. Khlebtsov NG, Dykman LA (2010) Optical properties and biomedical applications of plasmonic nanoparticles. J Quant Spectrosc Radiat Transfer 111:1–35CrossRefGoogle Scholar
  24. Kinyanjui JM, Harris-Burr R, Wagner JG, Wijeratne NR, Hatchett DW (2004) Hexachloroplatinate-initiated synthesis of polyaniline/platinum composite. Macromolecules 37:8745–8753CrossRefGoogle Scholar
  25. Kumar SS, Kumar CS, Mathiyarasu J, Phani KL (2007) Stabilized gold nanoparticles by reduction using 3,4-ethylenedioxythiophene-polystyrenesulfonate in aqueous solutions: nanocomposite formation, stability, and application in catalysis. Langmuir 23:3401–3408CrossRefGoogle Scholar
  26. Lee K-P, Gopalan AI, Santhosh P, Lee SH, Nho YC (2007) Gamma radiation induced distribution of gold nanoparticles into carbon nanotube-polyaniline composite. Compos Sci Technol 67:811–816CrossRefGoogle Scholar
  27. Lee WJ, Lee JW, Kim CG (2008) Characteristics of an electromagnetic wave absorbing composite structure with a conducting polymer electromagnetic bandgap (EBG) in the X-band. Compos Sci Technol 68:2485–2489CrossRefGoogle Scholar
  28. Li X, Li Y, Tan Y, Yang C, Li Y (2004) Self-assembly of gold nanoparticles prepared with 3,4-ethylenedioxythiophene as reductant. J Phys Chem B 108:5192–5199CrossRefGoogle Scholar
  29. Li C, Bai H, Shi G (2009) Conducting polymer nanomaterials: electrosynthesis and applications. Chem Soc Rev 38:2397–2409CrossRefGoogle Scholar
  30. Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410–8426CrossRefGoogle Scholar
  31. López-Palacios J, Muñoz E, Heras MA, Colina A, Ruiz V (2006) Study of polyaniline films degradation by thin-layer bidimensional spectroelectrochemistry. Electrochim Acta 52:234–239CrossRefGoogle Scholar
  32. Myroshnychenko V, Rodríguez-Fernández J, Pastoriza-Santos I, Funston AM, Novo C, Mulvaney P, Liz-Marzán LM, García De Abajo FJ (2008) Modelling the optical response of gold nanoparticles. Chem Soc Rev 37:1792–1805CrossRefGoogle Scholar
  33. Orcajo O, Ventosa E, Martínez A, Colina A, Heras A, Ruiz V, López-Palacios J (2006) A new reflection-transmission bidimensional spectroelectrochemistry cell: electrically controlled release of chemicals from a conducting polymer. J Electroanal Chem 596:95–100CrossRefGoogle Scholar
  34. Sarma TK, Chattopadhyay A (2004) One pot synthesis of nanoparticles of aqueous colloidal polyaniline and its Au-nanoparticle composite from monomer vapor. J Phys Chem A 108:7837–7842CrossRefGoogle Scholar
  35. Selvaganesh SV, Mathiyarasu J, Phani KLN, Yegnaraman V (2007) Chemical synthesis of PEDOT-Au nanocomposite. Nanoscale Res Lett 2:546–549CrossRefGoogle Scholar
  36. Selvam TS, Chi KM (2011) Synthesis of hydrophobic gold nanoclusters: growth mechanism study, luminescence property and catalytic application. J Nanopart Res 13:1769–1780CrossRefGoogle Scholar
  37. Shin HJ, Hwang I-W, Hwang Y-N, Kim D, Han SH, Lee J-S, Cho G (2003) Comparative investigation of energy relaxation dynamics of gold nanoparticles and gold-polypyrrole encapsulated nanoparticles. J Phys Chem B 107:4699–4704CrossRefGoogle Scholar
  38. Song S, Qin Y, He Y, Huang Q, Fan C, Chen HY (2010) Functional nanoprobes for ultrasensitive detection of biomolecules. Chem Soc Rev 39:4234–4243CrossRefGoogle Scholar
  39. Sperling RA, Rivera Gil P, Zhang F, Zanella M, Parak WJ (2008) Biological applications of gold nanoparticles. Chem Soc Rev 37:1896–1908CrossRefGoogle Scholar
  40. Stockhausen V, Martin P, Ghilane J, Leroux Y, Randriamahazaka H, Grand J, Felidj N, Lacroix JC (2010) Giant plasmon resonance shift using poly(3,4-ethylenedioxythiophene) electrochemical switching. J Am Chem Soc 132:10224–10226CrossRefGoogle Scholar
  41. Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179CrossRefGoogle Scholar
  42. Tsakova V, Borissov D, Ivanov S (2001) Role of polymer synthesis conditions for the copper electrodeposition in polyaniline. Electrochem Commun 3:312–316CrossRefGoogle Scholar
  43. Turbiez M, Frère P, Roncali J (2003) Stable and soluble oligo(3,4-ethylenedioxythiophene)s end-capped with alkyl chains. J Org Chem 68:5357–5360CrossRefGoogle Scholar
  44. Vaia RA, Maguire JF (2007) Polymer nanocomposites with prescribed morphology: going beyond nanoparticle-filled polymers. Chem Mater 19:2736–2751CrossRefGoogle Scholar
  45. Ventosa E, Colina A, Heras A, Martínez A, Orcajo O, Ruiz V, López-Palacios J (2008) Electrochemical, spectroscopic and electrogravimetric detection of oligomers occluded in electrochemically synthesized poly(3,4-ethylenedioxythiophene) films. Electrochim Acta 53:4219–4227CrossRefGoogle Scholar
  46. Wang X, Zhuang J, Peng Q, Li Y (2005) A general strategy for nanocrystal synthesis. Nature 437:121–124CrossRefGoogle Scholar
  47. Wang D, Huang J, Liu Y, Han X, You T (2011) Facile synthesis and electrochemical properties of octahedral gold nanocrystals. J Nanopart Res 13:157–163CrossRefGoogle Scholar
  48. Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48:60–103CrossRefGoogle Scholar
  49. Xiao Y, Chang ML (2008) Nanocomposites: from fabrications to electrochemical bioapplications. Electroanal 20:648–662CrossRefGoogle Scholar
  50. Yang W, Liu J, Zheng R, Liu Z, Dai Y, Chen G, Ringer S, Braet F (2008) Ionic liquid-assisted synthesis of polyaniline/gold nanocomposite and its biocatalytic application. Nanoscale Res Lett 3:468–472CrossRefGoogle Scholar
  51. Yu L, Andriola A (2010) Quantitative gold nanoparticle analysis methods: a review. Talanta 82:869–875CrossRefGoogle Scholar
  52. Zanardi C, Terzi F, Pigani L, Heras A, Colina A, López-Palacios J, Seeber R (2008) Development and characterisation of a novel composite electrode material consisting of poly(3,4-ethylenedioxythiophene) including Au nanoparticles. Electrochi Acta 53:3916–3923CrossRefGoogle Scholar
  53. Zhang Q, Tan YN, Xie J, Lee JY (2009a) Colloidal synthesis of plasmonic metallic nanoparticles. Plasmonics 4:9–22CrossRefGoogle Scholar
  54. Zhang X, Guo Q, Cui D (2009b) Recent advances in nanotechnology applied to biosensors. Sensors 9:1033–1053CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • E. Ventosa
    • 1
  • A. Colina
    • 2
  • A. Heras
    • 2
  • V. Ruiz
    • 3
    • 4
  • J. Garoz
    • 2
  • J. López-Palacios
    • 2
  1. 1.Analytische Chemie-Elektroanalytik and SensorikRuhr-Universität BochumBochumGermany
  2. 2.Department of ChemistryUniversity of BurgosBurgosSpain
  3. 3.Department of Applied PhysicsAalto UniversityHelsinkiFinland
  4. 4.New Materials Department, CIDETEC-IK4—Centro de Tecnologías ElectroquímicasParque Tecnológico de San SebastiánDonostia–San SebastiánSpain

Personalised recommendations