Skip to main content
Log in

Tracer diffusion in nanofluids measured by fluorescence correlation spectroscopy

  • Brief Communication
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanofluids exhibit some intriguing thermal properties, and have great potential to increase efficiency in various heat technological applications in micro- and nano-technology. Recent studies on mass transport in nanofluids yielded some interesting but controversial results. In this communication, we report the tracer diffusion of fluorescent dye in different nanofluids. Measurements were performed using fluorescence correlation spectroscopy (FCS). Nanoparticle concentration in the nanofluid varied up to 1.7 vol%, and the diffusion coefficient of fluorescent dye was measured. Our results showed no significant changes in diffusion of dyes in the concentration range used, and the results indicate that more research is needed to completely understand the diffusion in nanofluids. This communication brings upon the powerful FCS technique for the first time to study the dynamics of nanofluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Berland KM, So PTC et al (1995) 2-Photon fluorescence correlation spectroscopy—method and application to the intracellular environment. Biophys J 68(2):694–701

    Article  CAS  Google Scholar 

  • Bisquert J (2004) Chemical diffusion coefficients of electrons in nanostructured semiconductor electrodes and dye-sensitive solar cells. J Phys Chem B 108:2323–2332

    Article  CAS  Google Scholar 

  • Bocquet L, Charlaix E (2010) Nanofluidics from bulk to interfaces. Chem Soc Rev 39(3):1073–1095

    Article  CAS  Google Scholar 

  • Cherdhirankorn T, Best A et al (2009) Diffusion in polymer solutions studied by fluorescence correlation spectroscopy. J Phys Chem B 113(11):3355–3359

    Article  CAS  Google Scholar 

  • Choi SUS, Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles. ASME International Mechanical Engineering Congress and Exposition, San Francisco

    Google Scholar 

  • Cussler EL (1984) Diffusion: mass transfer in fluid systems. Cambridge University Press, New York

    Google Scholar 

  • Das SK, Choi SUS, Yu W, Pradeep T (2008) Nanofluids: science and technology. Wiley, Hoboken

    Google Scholar 

  • Eastman JA, Choi SUS, Li S, Thompson LJ, Lee S (1996) Enhanced thermal conductivity through the development of nanofluids. Fall meeting of the materials research society, Boston

    Google Scholar 

  • Eastman JA, Choi SUS, Li S, Soyez G, Thompson LJ, DiMelfi RJ (1999) Novel thermal properties of nanostructured materials. Mater Sci Forum 312–314:629–634

    Article  Google Scholar 

  • Eastman JA, Choi SUS et al (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78(6):718–720

    Article  CAS  Google Scholar 

  • Eastman JA, Phillpot SR et al (2004) Thermal transport in nanofluids. Ann Rev Mater Res 34:219–246

    Article  CAS  Google Scholar 

  • Einstein A (1956) Investigations on the theory of the brownian movement. Dover Publications, New York

    Google Scholar 

  • Fang XP, Xuan YM et al (2009) Experimental investigation on enhanced mass transfer in nanofluids. Appl Phys Lett 95(20):203108

    Article  Google Scholar 

  • Gerardi CC, Buongiorno DJ, Hu LW (2007) Nuclear magnetic resonance measurement of diffusion coefficients. T Am Nucl Soc 96:485–486

    Google Scholar 

  • Keblinski P, Phillpot SR et al (2002) Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Tran 45(4):855–863

    Article  CAS  Google Scholar 

  • Krishnamurthy S, Bhattacharya P et al (2006) Enhanced mass transport in nanofluids. Nano Lett 6(3):419–423

    Article  CAS  Google Scholar 

  • Lee S, Choi SUS et al (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Trans-T ASME 121(2):280–289

    Article  CAS  Google Scholar 

  • Magde EED, Webb WW (1972) Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlation. Phys Rev Lett 29(11):705–708

    Article  CAS  Google Scholar 

  • Magde D, Elson EL, Webb WW (1974) Fluorescence correlation spectroscopy II. An experimental realization. Biopolymers 13:29–61

    Article  CAS  Google Scholar 

  • Omari RA, Grabowski CA et al (2009) Effect of surface curvature on critical adsorption. Phys Rev Lett 103(22):225705

    Article  Google Scholar 

  • Ozturk S, Hassan YA et al (2010) Interfacial complexation explains anomalous diffusion in nanofluids. Nano Lett 10(2):665–671

    Article  CAS  Google Scholar 

  • Petrášek Z, Schwille P (2008) Precise measurement of diffusion coefficients using scanning fluorescence correlation spectroscopy. Biophys J 94:1437–1448

    Article  Google Scholar 

  • Schwille P, Haupts U et al (1999) Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation. Biophys J 77(4):2251–2265

    Article  CAS  Google Scholar 

  • Turanov AN, Tolmachev YV (2009) Heat- and mass-transport in aqueous silica nanofluids. Heat Mass Transf 45(12):1583–1588

    Article  CAS  Google Scholar 

  • Xuan YM (2009) Conception for enhanced mass transport in binary nanofluids. Heat Mass Transf 46(2):277–279

    Article  Google Scholar 

  • Zhao J, Granick S (2007) How polymer surface diffusion depends on surface coverage. Macromolecules 40(4):1243–1247

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Sasidhar Kondaraju and Elayaraja Muthuswamy for useful discussion and for the help in TEM and DLS measurements, respectively. The research is supported by National Science Foundation through Grant No. DMR-0605900.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashis Mukhopadhyay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subba-Rao, V., Hoffmann, P.M. & Mukhopadhyay, A. Tracer diffusion in nanofluids measured by fluorescence correlation spectroscopy. J Nanopart Res 13, 6313–6319 (2011). https://doi.org/10.1007/s11051-011-0607-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0607-5

Keywords

Navigation