Journal of Nanoparticle Research

, Volume 13, Issue 12, pp 6613–6620 | Cite as

Mesoporous silica-coated superparamagnetic particles prepared by pseudomorphic transformation and their application in purification of plasmid DNA

  • Feng Yan
  • Lin Sun
  • Fubiao Li
  • Jiaqi Zhuang
  • Hongliang Wang
  • Wensheng Yang
Research Paper


Mesoporous silica-coated superparamagnetic particles were prepared via pseudomorphic transformation of pre-made amorphous silica-coated Fe3O4–polymer composite particles using n-cetyltrimethylammonium bromide (CTAB) and 1,3,5-trimethyl benzene (MES) as template. The mesoporous particles presented almost the same size, shape, and magnetic property as the original amorphous particles but an ordered mesoporous shell with wormhole-like pore structure. The pore size of the shells increased from 2.4 to 3.1 and 4.2 nm as the molar ratio of MES/CTAB increased from 0 to 1.0 and 1.5. DNA extraction experiments showed the mesoporous particles were qualified for purification of plasmid DNA from bacterial lysate.

Graphical abstract


Silica Mesoporous Superparamagnetic Pseudomorphic transformation DNA Nanomedicine 



This study was supported by National Basic Research Program of China (No. 2011CB935800) and the National Nature Science Foundation of China (No. 51072064, 50825202).


  1. Arruebo M, Ho WY, Lam KF, Chen X, Arbio J, Santamaría J, Yeung KL (2008) Preparation of magnetic nanoparticles encapsulated by an ultrathin silica shell via transformation of magnetic Fe-MCM-41. Chem Mater 20:486–493. doi: 10.1021/cm703269w CrossRefGoogle Scholar
  2. Bao J, Chen W, Liu T, Zhu Y, Jin P, Wang L, Liu J, Wei Y, Li Y (2007) Bifunctional Au-Fe3O4 nanoparticles for protein separation. ACS Nano 1:293–298. doi: 10.1021/nn700189h CrossRefGoogle Scholar
  3. Botella P, Corma A, Navarro MT (2007) Single gold nanoparticles encapsulated in monodispersed regular spheres of mesostructured silica produced by pseudomorphic transformation. Chem Mater 19:1979–1983. doi: 10.1021/cm0629457 CrossRefGoogle Scholar
  4. Deng H, Li X, Peng Q, Wang X, Chen J, Li Y (2005) Monodisperse magnetic single-crystal ferrite microspheres. Angew Chem Int Ed 44:2782–2785. doi: 10.1002/anie.200462551 CrossRefGoogle Scholar
  5. Deng Y, Qi D, Deng C, Zhang X, Zhao D (2008) Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J Am Chem Soc 130:28–29. doi: 10.1021/ja0777584 CrossRefGoogle Scholar
  6. Fortin JP, Wilhelm C, Servais J, Ménager C, Bacri J-C, Gazeau F (2007) Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc 129:2628–2635. doi: 10.1021/ja067457e CrossRefGoogle Scholar
  7. Fujiwara M, Shiokawa K, Tanaka Y, Nakahara Y (2004) Preparation and formation mechanism of silica microcapsules (hollow sphere) by water/oil/water interfacial reaction. Chem Mater 16:5420–5426. doi: 10.1021/cm048804r CrossRefGoogle Scholar
  8. Ge J, Hu Y, Biasini M, Beyermann WP, Yin Y (2007) Superparamagnetic magnetite colloidal nanocrystal clusters. Angew Chem Int Ed 46:4342–4345. doi: 10.1002/anie.200700197 CrossRefGoogle Scholar
  9. Huang S, Yang P, Cheng Z, Li C, Fan Y, Kong D, Lin J (2008) Synthesis and characterization of magnetic FexOy@SBA-15 composites with different morphologies for controlled drug release and targeting. J Phys Chem C 112:7130–7137. doi: 10.1021/jp800363s CrossRefGoogle Scholar
  10. Jordan A, Scholz R, Wust P, Fähling H, Felix R (1999) Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J Magn Magn Mater 201:413–419. doi: 10.1016/S0304-8853(99)00088-8 CrossRefGoogle Scholar
  11. Kim J, Lee JE, Lee J, Yu JH, Kim BC, An K, Hwang Y, Shin CH, Park JG, Kim J, Hyeon T (2006) Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. J Am Chem Soc 128:688–689. doi: 10.1021/ja0565875 CrossRefGoogle Scholar
  12. Kim J, Kim HS, Lee N, Kim T, Kim H, Yu T, Song IC, Moon W, Hyeon T (2008) Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew Chem Int Ed 47:8438–8441. doi: 10.1002/anie.200802469 CrossRefGoogle Scholar
  13. Kresge CT, Leonowicz ME, Roth WJ, Vatuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712. doi: 10.1038/359710a0 CrossRefGoogle Scholar
  14. Lee JE, Lee N, Kim H, Kim J, Choi SH, Kim JH, Kim T, Song IC, Park SP, Moon WK, Hyeon T (2010) Uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery. J Am Chem Soc 132:552–557. doi: 10.1021/ja905793q CrossRefGoogle Scholar
  15. Li Z, Wei L, Gao M, Lei H (2005) One-pot reaction to synthesize biocompatible magnetite nanoparticles. Adv Mater 17:1001–1005. doi: 10.1002/adma.200401545 CrossRefGoogle Scholar
  16. Lu Y, Yin Y, Mayer BT, Xia YN (2002) Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a Sol–Gel Approach. Nano Lett 2:183–186. doi: 10.1021/nl015681q CrossRefGoogle Scholar
  17. Lu AH, Li WC, Kiefer A, Schmidt W, Bill E, Fink G, Schüth F (2004) Fabrication of magnetically separable mesostructured silica with an open pore system. J Am Chem Soc 126:8616–8617. doi: 10.1021/ja0486521 CrossRefGoogle Scholar
  18. Martin T, Galarneau A, Di Renzo F, Fajula F, Plee D (2002) Morphological control of MCM-41 by pseudomorphic synthesis. Angew Chem Int Ed 41:2590–2592. doi: 10.1002/1521-3773(20020715)41:14<2590:AID-ANIE2590>3.0.CO;2-3 CrossRefGoogle Scholar
  19. Neuberger T, Schöpf B, Hofmann H, Hofmann M, Von Rechenber B (2005) Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater 293:483–496. doi: 10.1016/j.jmmm.2005.01.064 CrossRefGoogle Scholar
  20. Petitto C, Galarneau A, Driole MF, Chiche B, Alonso B, Di Renzo F, Fajula F (2005) Synthesis of discrete micrometer-sized spherical particles of MCM-48. Chem Mater 17:2120–2130. doi: 10.1021/cm050068j CrossRefGoogle Scholar
  21. Philipse AP, Van Brugen MPB, Pathmamanoharan C (1994) Magnetic silica dispersions: preparation and stability of surface-modified silica particles with a magnetic core. Langmuir 10:92–99. doi: 10.1021/la00013a014 CrossRefGoogle Scholar
  22. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  23. Slowing II, Trewyn BG, Lin VSY (2007) Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins. J Am Chem Soc 129:8845–8849. doi: 10.1021/ja0719780 CrossRefGoogle Scholar
  24. Solberg SM, Landry CC (2006) Adsorption of DNA into mesoporous silica. J Phys Chem B 110:15261–15268. doi: 10.1021/jp061691+ CrossRefGoogle Scholar
  25. Teng Z, Han Y, Li J, Yan F, Yang W (2010) Preparation of hollow mesoporous silica spheres by a sol–gel/emulsion approach. Microporous Mesoporous Mater 127:67–72. doi: 10.1016/j.micromeso.2009.06.028 CrossRefGoogle Scholar
  26. Wang J, Xia Y, Wang W, Poliskoff M, Mokaya R (2006) Synthesis of mesoporous silica hollow spheres in supercritical CO2/water systems. J Mater Chem 16:1751–1756. doi: 10.1039/b601301e CrossRefGoogle Scholar
  27. Xu C, Xu K, Gu H, Zhong X, Guo Z, Zheng R, Zhang X, Xu B (2004) Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins. J Am Chem Soc 126:3392–3393. doi: 10.1021/ja031776d CrossRefGoogle Scholar
  28. Yan F, Li J, Fu R, Yang Z, Yang W (2009a) Facile preparation of superparamagnetic Fe3O4/Poly(St-co-MPS)/SiO2 composite particles with high magnetization by introduction of silanol groups. J Nanosci Nanotechnol 9:5874–5879. doi: 10.1166/jnn.2009.1240 CrossRefGoogle Scholar
  29. Yan F, Li J, Zhang J, Liu F, Yang W (2009b) Preparation of Fe3O4/polystyrene composite particles from monolayer oleic acid modified Fe3O4 nanoparticles via miniemulsion polymerization. J Nanopart Res 11:289–296. doi: 10.1007/s11051-008-9382-3 CrossRefGoogle Scholar
  30. Yang C, Wang G, Lu Z, Sun J, Zhuang J, Yang W (2005) Effect of ultrasonic treatment on dispersibility of Fe3O4 nanoparticles and synthesis of multi-core Fe3O4/SiO2 core/shell nanoparticles. J Mater Chem 15:4252–4257. doi: 10.1039/b505018a CrossRefGoogle Scholar
  31. Yuan H, Yan F, Ma L, Wu F, Zhuang J, Yang W (2011) Carboxyl-functionalized superparamagnetic Fe3O4/Poly(St-co-MPS)/SiO2 composite particles for rapid and sensitive immunoassay. J Nanosci Nanotechnol 11:2232–2236. doi: 10.1166/jnn.2011.3115 CrossRefGoogle Scholar
  32. Zhu Y, Kaskel S, Shi J, Wage T, Pée KH (2007) Immobilization of trametes versicolor laccase on magnetically separable mesoporous silica spheres. Chem Mater 19:6408–6413. doi: 10.1021/cm071265g CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.State Key Laboratory of Supramolecular Structures and Materials, College of ChemistryJilin UniversityChangchunPeople’s Republic of China
  2. 2.Department of Andrology, The First HospitalJilin UniversityChangchunPeople’s Republic of China
  3. 3.College of Chemistry and Resources EnvironmentLinyi Normal UniversityLinyiPeople’s Republic of China

Personalised recommendations