Cerium oxide and platinum nanoparticles protect cells from oxidant-mediated apoptosis

  • Andrea Clark
  • Aiping Zhu
  • Kai Sun
  • Howard R. Petty
Research Paper


Catalytic nanoparticles represent a potential clinical approach to replace or correct aberrant enzymatic activities in patients. Several diseases, including many blinding eye diseases, are promoted by excessive oxidant stress due to reactive oxygen species (ROS). Cerium oxide and platinum nanoparticles represent two potentially therapeutic nanoparticles that de-toxify ROS. In the present study, we directly compare these two classes of catalytic nanoparticles. Cerium oxide and platinum nanoparticles were found to be 16 ± 2.4 and 1.9 ± 0.2 nm in diameter, respectively. Using surface plasmon-enhanced microscopy, we find that these nanoparticles associate with cells. Furthermore, cerium oxide and platinum nanoparticles demonstrated superoxide dismutase catalytic activity, but did not promote hemolytic or cytolytic pathways in living cells. Importantly, both cerium oxide and platinum nanoparticles reduce oxidant-mediated apoptosis in target cells as judged by the activation of caspase 3. The ability to diminish apoptosis may contribute to maintaining healthy tissues.


Catalytic nanoparticles Reactive oxygen metabolites Cell toxicity Apoptosis Nanomedicine 



This work was supported by NIH grant EY 019986 to H.R.P.


  1. Asati A, Santra S, Kaittanis C, Nath S, Perez JM (2009) Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew Chem Int Ed Engl 48:2308–2312Google Scholar
  2. Bumajdad A, Eastoe J, Mathew A (2009) Cerium oxide nanoparticles prepared in self-assembled systems. Adv Colloid Interface Sci 147–148:56–66CrossRefGoogle Scholar
  3. Caldwell RB, Bartoli M, Behzadian MA, El-Remessy AE, Al-Shabrawey M, Platt DH, Liou GI, Caldwell RW (2005) Vascular endothelial growth factor and diabetic retinopathy: role of oxidative stress. Curr Drug Targets 6:511–524CrossRefGoogle Scholar
  4. Chen J, Patil S, Seal S, McGinnis JF (2006) Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat Nanotechnol 1:142–150CrossRefGoogle Scholar
  5. Chen Q, Lu T, Xu M, Meng C, Hu Y, Sun K, Shlimak I (2011) Fabrication of uniform Ge-nanocrystals embedded in amorphous SiO2 films using Ge-ion implantation and neutron irradiation methods. Appl Phys Lett 98:073103-1–073103-3Google Scholar
  6. Clark AJ, Diamond M, Elfline M, Petty HR (2010) Calcium microdomains form within neutrophils at the neutrophil-tumor cell synapse: role in antibody-dependent target cell apoptosis. Cancer Immunol Immunother 59:149–159CrossRefGoogle Scholar
  7. Colon J, Herrera L, Smith J, Patil S, Komanski C, Kupelian P, Seal S, Jenkins DW, Baker CH (2009) Protection from radiation-induced pneumonitis using cerium oxide nanoparticles. Nanomedicine 5:225–231CrossRefGoogle Scholar
  8. Das M, Patil S, Bhargava N, Kang JF, Riedel LM, Seal S, Hickman JJ (2007) Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomaterials 28:1918–1925CrossRefGoogle Scholar
  9. Deshpande S, Patil S, Kuchibhatia SVNT, Seal S (2005) Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl Phys Lett 87:133113-1–133113-3CrossRefGoogle Scholar
  10. Elswaifi SF, Palmieri JR, Hockey KS, Rzigalinski BA (2009) Antioxidant nanoparticles for control of infectious disease. Infect Disord Drug Targets 9:445–452Google Scholar
  11. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2:577–583CrossRefGoogle Scholar
  12. Hamasaki T, Kashiwagi T, Imada T, Nakamichi N, Aramaki S, Toh K, Morisawa S, Shimakoshi H, Hisaeda Y, Shirahata S (2008) Kinetic analysis of superoxide anion radical-scavenging and hydroxyl radical-scavenging activities of platinum nanoparticles. Langmuir 24:7354–7364CrossRefGoogle Scholar
  13. Hikosaka K, Kim J, Kajita M, Kanayama A, Miyamoto Y (2008) Platinum nanoparticles have an activity similar to mitochondrial NADH:ubiquinone oxidoreductase. Colloids Surf B 66:195–200CrossRefGoogle Scholar
  14. Kajita M, Hikosaka K, Iitsuka M, Kanayama A, Toshima N, Miyamoto Y (2007) Platinum nanoparticle is a useful scavenger of superoxide anion and hydrogen peroxide. Free Radic Res 41:615–626CrossRefGoogle Scholar
  15. Kanwar M, Chan PS, Kern TS, Kowluru RA (2007) Oxidative damage in the retinal mitochondria of diabetic mice: possible protection by superoxide dismutase. Invest Ophthalmol Vis Sci 48:3805–3811CrossRefGoogle Scholar
  16. Kawaji T, Elner VM, Yang DL, Clark A, Petty HR (2011) Nuclear translocation of glyceraldehyde 3-phosphate dehydrogenase in human retinal pigment epithelium induced by oxidative stress. Redox Rep 16:24–26CrossRefGoogle Scholar
  17. Kim J, Takahaski M, Shimizu T, Shirasawa T, Kajita M, Kanayama A, Miyamoto Y (2008) Effects of a potent antioxidant, platinum nanoparticle, on the lifespan of Caenorhabditis elegans. Mech Ageing Dev 129:322–331CrossRefGoogle Scholar
  18. Kim Y-J, Kim D, Lee Y, Choi SY, Park J, Lee SY, Park JW, Kwon HJ (2009) Effects of nanoparticles saponin-platinum conjugates on 2,4-dinitrofluorobenzene-induced macrophage inflammatory protein-2 gene expression via oxygen species production in RAW 264.7 cells. BMB Rep 42:304–309CrossRefGoogle Scholar
  19. Kim J, Shirasawa T, Miyamoto Y (2010) The effect of TAT conjugated platinum nanoparticles on lifespan in a nematode Caenorhabditis elegans model. Biomaterials 31:5849–5854CrossRefGoogle Scholar
  20. Korsvik C, Patil S, Seal S, Self WT (2007) Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem Commun (Camb) 14:1056–1058CrossRefGoogle Scholar
  21. Kowluru RA, Abbas SN (2003) Diabetes-induced mitochondrial dysfunction in the retina. Invest Ophthalmol Vis Sci 44:5327–5334CrossRefGoogle Scholar
  22. Kowluru RA, Kern TS, Engerman RL (1997) Abnormalities of retinal metabolism in diabetes or experimental galactosemia. IV. Antioxidant defense system. Free Radic Biol Med 22:587–592CrossRefGoogle Scholar
  23. Kowluru RA, Tang J, Kern TS (2001) Abnormalities of retinal metabolism in diabetes and experimental galactosemia. VII. Effect of long-term administration of antioxidants on the development of retinopathy. Diabetes 50:1938–1942CrossRefGoogle Scholar
  24. Kowluru RA, Kowluru V, Xiong Y, Ho YS (2006) Overexpression of mitochondrial superoxide dismutase in mice protects the retina from diabetes-induced oxidative stress. Free Radic Biol Med 41:1191–1196CrossRefGoogle Scholar
  25. Mamontov E, Egami T (2000) Lattice defects an oxygen storage capacity of nanocrystalline ceria and ceria–zirconia. J Phys Chem B 104:11110–11116CrossRefGoogle Scholar
  26. Niu J, Azfer A, Rogers LM, Wang X, Kolattukudy PE (2007) Cardioprotective effects of cerium oxide nanoparticles in a transgenic murine model of cardiomyopathy. Cardiovasc Res 73:549–559CrossRefGoogle Scholar
  27. Onizawa S, Aoshiba K, Kajita M, Miyamoto Y, Nagai A (2009) Platinum nanoparticle antioxidants inhibit pulmonary inflammation in mice exposed to cigarette smoke. Pulm Pharmacol Ther 22:340–349CrossRefGoogle Scholar
  28. Osborn NM (2008) Involvement of oxidative stress in the pathogenesis of glaucoma. In: Cadenas E, Zierhut M, Rao NA (eds) Free radicals in ophthalmic disorders. Informa Healthcare, New York, NYGoogle Scholar
  29. Paxton WF, Kistler KC, Olmeda CC, Sen A, St. Angelo SK, Cao Y, Mallouk TE, Lammert PE, Crespi VH (2004) Catalytic nanomotors: autonomous movement of striped nanorods. J Am Chem Soc 126:13424–13431CrossRefGoogle Scholar
  30. Saaddine JB, Honeycutt AA, Narayan KM, Zhang X, Klein R, Boyle JP (2008) Projection of diabetic retinopathy and other major eye diseases among people with diabetes mellitus: United States, 2005–2050. Arch Ophthalmol 126:1740–1747CrossRefGoogle Scholar
  31. Schubert D, Dargusch R, Raitano J, Chan S-W (2006) Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem Biophys Res Comm 342:86–91CrossRefGoogle Scholar
  32. Shiraishi Y, Nakayama M et al (2000) Effect of quantity of polymer on catalysis and superstructure size of polymer-protected Pt nanoclusters. Inorgan Chim Acta 300:964–969CrossRefGoogle Scholar
  33. Singh N, Cohen CA, Rzigalinski BA (2007) Treatment of neurodegenerative disorders with radical nanomedicine. Ann NY Acad Sci 1122:219–230CrossRefGoogle Scholar
  34. Tarnuzzer RW, Colon J, Patil S, Seal S (2005) Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage. Nano Lett 5:2573–2577CrossRefGoogle Scholar
  35. Ukeda H, Kawana D, Maeda S, Sawamura M (1999) Spectrophotometric assay for superoxide dismutase based on the reduction of highly water-soluble tetrazolium salts by xanthine–xanthine oxidase. Biosci Biotechnol Biochem 63:485–488CrossRefGoogle Scholar
  36. Vainrub A, Pustovyy O, Vodyanoy V (2006) Resolution of 90 nm (λ/5) in an optical transmission microscope with an annular condenser. Optics Lett 31:2855–2857CrossRefGoogle Scholar
  37. Watanabe A, Kajita M, Kim J, Kanayama A, Takahashi K, Mashino T, Miyamoto Y (2009) In vitro free radical scavenging activity of platinum nanoparticles. Nanotechnology 20:455105–455114CrossRefGoogle Scholar
  38. Wu GS, Zhang J, Rao NA (1997) Peroxynitrite and oxidative damage in experimental autoimmune uveitis. Invest Ophthal Vis Sci 38:1333–1339Google Scholar
  39. Zhang L, Luag L, Munchgesang W, Pippel E, Gösele U, Brandsch M, Knez M (2010) Reducing stress on cells with apoferritin-encapsulated platinum nanoparticles. Nano Lett 10:219–223CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Andrea Clark
    • 1
  • Aiping Zhu
    • 1
  • Kai Sun
    • 2
  • Howard R. Petty
    • 1
  1. 1.Department of Ophthalmology and Visual SciencesThe University of Michigan Medical SchoolAnn ArborUSA
  2. 2.Department of Materials Science and EngineeringThe University of MichiganAnn ArborUSA

Personalised recommendations