Journal of Nanoparticle Research

, Volume 13, Issue 10, pp 5301–5309 | Cite as

Entry of large nanoparticles into cells aided by nanoscale mechanical stimulation

  • Ramanathan Vaidyanathan
  • Adam Curtis
  • Margaret Mullin
Research Paper


Nanoparticle entry into the cell depends on the surface charge and also on their size. Here, we report the entry of large magnetic nanoparticles (500 nm mean diameter) into the cell, being mediated by a mechanical stimulus supplied to the culture flasks. Investigations were carried out at 2–10 Hz frequency range with the vertical excursions ranging from 5 to 20 nm. Mechanical stimulation was found to aid the entry of both positive and negatively charged nanoparticles over a frequency range of 2–10 Hz. Transmission electron microscopy analysis indicated that, the stimulated samples could possibly mediate particle uptake through membrane invaginations, while the control samples indicated particles at the cell periphery, just outside the cell membrane. Mechanical stimulation had no significant effect on the cell morphology. Bromodeoxyuridine incorporation resulted in an increase in the proportion of S-phase in the stimulated samples compared with the controls, suggesting a reduction in the cell cycle duration. Mechanical stimulation could very well extend its effects to nanoscale cellular movements, and also facilitate the entry of large magnetic nanoparticle. This could be an interesting prospect for nanoparticle mediated drug delivery.


Nanoscale stimulation Magnetic nanoparticles Cell cycle Surface charge Particle uptake Nanomedicine 



The authors wish to thank Carol-Anne Smith and Andrew Hart for their valuable technical assistance.


  1. Berry CC, Charles S, Wells S, Dalby MJ, Curtis ASG (2004) The influence of transferrin stabilised magnetic nanoaprticles on human dermal fibroblasts in culture. Int J Pharm 269:211–225. doi: 10.1016/j.ijpharm.2003.09.042 CrossRefGoogle Scholar
  2. Boccafoschi F, Bosetti M, Sandra PM, Leigheb M, Cannas M (2010) Effects of mechanical stress on cell adhesion: a possible mechanism for morphological changes. Cell Adh Migr 4(1):19–25. doi: 10.4161/cam.4.1.9569 CrossRefGoogle Scholar
  3. Brown TD (1995) Techniques for cell and tissue culture mechanostimulation: historical and contemporary design considerations. Iowa Orthop J 15:112–117Google Scholar
  4. Brown TD (2000) Techniques for mechanical stimulation of cells in vitro: a review. J Biomech 33:3–14. doi: 10.1016/S0021-9290(99)00177-3 CrossRefGoogle Scholar
  5. Curtis ASG, Seehar GM (1978) The control of cell division by tension or diffusion. Nature 274:52–53. doi: 10.1038/274052a0 CrossRefGoogle Scholar
  6. Häfeli UO, Riffle JS, Harris-Shekhawat L, Carmichael-Baranauskas A, Mark F, Dailey JP, Bardenstein D (2009) Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery. Mol Pharm 6(5):1417–1428. doi: 10.1021/mp900083m CrossRefGoogle Scholar
  7. Harush-Frenkel O, Debotton N, Benita S, Altschuler Y (2007) Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochem Biophys Res Commun 353:26–32. doi: 10.1016/j.bbrc.2006.11.135 CrossRefGoogle Scholar
  8. Hughes S, Dobson J, Haj AE (2003) Mechanical stimulation of calcium signaling pathways in human bone cells using ferromagnetic micro-particles: implications for tissue engineering. Eur Cells Mater 6(2):43Google Scholar
  9. Kim M, Javed NH, Yu JG, Christofi F, Cooke HJ (2001) Mechanical stimulation activates Galphaq signaling pathways and 5-hydroxytryptamine release from human carcinoid BON cells. J Clin Invest 108(7):1051–1059. doi: 10.1172/JCI12467 Google Scholar
  10. Lange E, Koenig FO (1993) Handbuch der experimentalphysik. Leipzig, 263 ppGoogle Scholar
  11. Li Y, Chen X, Gu N (2008) Computational Investigation of Interaction between nanoparticles and membranes: hydrophobic/hydrophilic effect. J Phys Chem B 112:16647–16653. doi: 10.1021/jp8051906 CrossRefGoogle Scholar
  12. Marchal G, Van Hecke P, Demaerel P, Decrop E, Kennis C, Baert AL, van der Schueren E (1989) Detection of liver metastases with superparamagnetic iron oxide in 15 patients: results of MR imaging at 1.5 T. Am J Roentgen 152:771–775. doi: 0361-803X/AJR89/1524-07710 Google Scholar
  13. Overbeek JTHD (1952) Electrochemistry of the double layer, Chap 6, vol 1. In: Kruyt HR (ed) Colloid science. Elsevier, Amsterdam, pp 124–126Google Scholar
  14. Petri-Fink A, Chastellain M, Juillerat-Jeanneret L, Ferrari A, Hofmann H (2005) Development of functionalized superparamagnetic iron oxide nanoparticles for interaction with human cancer cells. Biomaterials 26:2685–2694. doi: 10.1016/j.biomaterials.2004.07.023 CrossRefGoogle Scholar
  15. Pioletti DP, Muller J, Rakotomanana LR, Corbeil J, Wild E (2003) Effect of micromechanical stimulations on osteoblasts: development of a device simulating the mechanical situation at the bone-implant interface. J Biomech 36(1):131–135. doi: 10.1016/S0021-9290(02)00301-9 CrossRefGoogle Scholar
  16. Sahoo SK, Labhasetwar V (2003) Nanotech approaches to drug delivery and imaging. Drug Discov Today 8(24):1112–1120. doi: 10.1016/S1359-6446(03)02903-9 CrossRefGoogle Scholar
  17. Sahoo SK, Parveen S, Panda JJ (2007) The present and future of nanotechnology in human health care. Nanomed Nanotechnol Biol Med 3:20–31. doi: 10.1016/j.nano.2006.11.008 CrossRefGoogle Scholar
  18. Smith CA, de la Fuente J, Pelaz B, Furlani EP, Mullin M, Berry CC (2010) The effect of static magnetic fields and tat peptides on cellular and nuclear uptake of magnetic nanoparticles. Biomaterials 31:4392–4400. doi: 10.1016/j.biomaterials.2010.01.096 CrossRefGoogle Scholar
  19. Tripathi SC, Kerr J (1989) Effect of mechanical stress on cellular morphology. Tissue Cell 21(5):747–752. doi: 10.1016/0040-8166(89)90083-9 CrossRefGoogle Scholar
  20. Villanueva A, Canete M, Roca AG, Calero M, Veintamillas-Verdaguer S, Serna CJ, (2009) The influence of surface functionalization on the enhanced internalization of magnetic nanoparticles in cancer cells. Nanotechnology 20(11):115103. doi:  10.1088/0957-4484/20/11/115103 Google Scholar
  21. Zentner A, Wieschollek JH, Heaney TG (2001) Effects of mechanical stimulation on cell cycle duration in rat gingival fibroblast progenitor cells. Eur J Oral Sci 109(4):267–272. doi: 10.1034/j.1600-0722.2001.00062.x CrossRefGoogle Scholar
  22. Zhang LW, Monteiro-Riviere NA (2009) Mechanisms of quantum dot nanoparticle cellular uptake. Toxicol Sci 110:138–155. doi: 10.1093/toxsci/kfp087 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Ramanathan Vaidyanathan
    • 1
  • Adam Curtis
    • 1
  • Margaret Mullin
    • 1
  1. 1.Center for Cell EngineeringUniversity of GlasgowGlasgowUK

Personalised recommendations