The effective reinforcement of magnesium alloy ZK60A using Al2O3 nanoparticles

  • M. Paramsothy
  • J. Chan
  • R. Kwok
  • M. Gupta
Research Paper


ZK60A nanocomposite containing Al2O3 nanoparticle reinforcement (50 nm average size) was fabricated using solidification processing followed by hot extrusion. The nanocomposite exhibited similar grain size to the monolithic alloy, reasonable Al2O3 nanoparticle distribution, non-dominant (0 0 0 2) texture in the longitudinal direction, and 15% higher hardness than the monolithic alloy. Compared to the monolithic alloy (in tension), the nanocomposite exhibited lower yield strength (0.2%TYS) (−4%) and higher ultimate strength (UTS), failure strain, and work of fracture (WOF) (+13%, +170%, and +200%, respectively). Compared to the monolithic alloy (in compression), the nanocomposite exhibited lower yield strength (0.2%CYS) (−5%) and higher ultimate strength (UCS), failure strain, and WOF (+6%, +41%, and +43%, respectively). The effects of Al2O3 nanoparticle addition on the enhancement of tensile and compressive properties of ZK60A are investigated in this article.


ZK60A/Al2O3 nanocomposite Microstructure Nanoscale rod/disc intermetallic Mechanical properties 



The authors wish to acknowledge National University of Singapore (NUS) and Temasek Defence Systems Institute (TDSI) for funding this research (TDSI/09-011/1A and WBS# R265000349).


  1. Avedesian MM, Baker H (1999) ASM specialty handbook: magnesium and magnesium alloys. ASM International®, Novelty, OHGoogle Scholar
  2. Batra RC, Wei ZG (2007) Instability strain and shear band spacing in simple tensile/compressive deformations of thermoviscoplastic materials. Int J Impact Eng 34:448–463CrossRefGoogle Scholar
  3. Bohlen J, Yi SB, Swiostek J et al (2005) Microstructure and texture development during hydrostatic extrusion of magnesium alloy AZ31. Scripta Mater 53:259–264CrossRefGoogle Scholar
  4. Dai LH, Ling Z, Bai YL (2001) Size-dependent inelastic behavior of particle-reinforced metal–matrix composites. Compos Sci Technol 61:1057–1063CrossRefGoogle Scholar
  5. De Cicco M, Konishi H, Cao G et al (2009) Strong, ductile magnesium zinc nanocomposites. Metall Mater Trans A 40A:3038–3045CrossRefGoogle Scholar
  6. Eustathopoulos N, Nicholas MG, Drevet B (1999) Wettability at high temperatures, vol 3., Pergamon materials seriesPergamon Press, New YorkGoogle Scholar
  7. Feng Y, Zhou X, Min Z et al (2005) Superplasticity and texture of SiC whiskers in a magnesium-based composite. Scr Mater 53:361–365CrossRefGoogle Scholar
  8. Gilchrist JD (1989) Extraction metallurgy, 3rd edn. Pergamon Press, New YorkGoogle Scholar
  9. Goh CS, Wei J, Lee LC et al (2006) Development of novel carbon nanotube reinforced magnesium nanocomposites using the powder metallurgy technique. Nanotechnology 17:7–12CrossRefGoogle Scholar
  10. Gupta M, Lai MO, Soo CY (1996) Effect of type of processing on the microstructural features and mechanical properties of A1-Cu/SiC metal matrix composites. Mater Sci Eng A 210:114–122CrossRefGoogle Scholar
  11. Gupta M, Lai MO, Lim SC (1997) Regarding the processing associated microstructure and mechanical properties improvement of an Al-4.5Cu alloy. J Alloys Compd 260:250–255CrossRefGoogle Scholar
  12. Han BQ, Dunand DC (2000) Microstructure and mechanical properties of magnesium containing high volume fractions of yttria dispersoids. Mater Sci Eng A 277:297–304CrossRefGoogle Scholar
  13. Hassan SF, Gupta M (2005) Enhancing physical and mechanical properties of Mg using nanosized Al2O3 particulates as reinforcement. Metall Mater Trans A 36(8):2253–2258CrossRefGoogle Scholar
  14. Hassan SF, Gupta M (2006a) Effect of particulate size of Al2O3 reinforcement on microstructure and mechanical behavior of solidification processed elemental Mg. J Alloys Compd 419:84–90CrossRefGoogle Scholar
  15. Hassan SF, Gupta M (2006b) Effect of different types of nano-size oxide particulates on microstructural and mechanical properties of elemental Mg. J Mater Sci 41:2229–2236CrossRefGoogle Scholar
  16. Hassan SF, Gupta M (2006c) Effect of type of primary processing on the microstructure, CTE and mechanical properties of magnesium/alumina nanocomposites. Compos Struct 72:19–26CrossRefGoogle Scholar
  17. Hassan SF, Gupta M (2007) Development of nano-Y2O3 containing magnesium nanocomposites using solidification processing. J Alloys Compd 429:176–183CrossRefGoogle Scholar
  18. Hull D, Bacon DJ (2002) Introduction to dislocations, 4th edn. Butterworth-Heinemann, OxfordGoogle Scholar
  19. Jayaramanavar P, Paramsothy M, Balaji A et al (2010) Tailoring the tensile/compressive response of magnesium alloy ZK60A using Al2O3 nanoparticles. J Mater Sci 45(5):1170–1178CrossRefGoogle Scholar
  20. Kim WJ, Kim MJ, Wang JY (2009) Superplastic behavior of a fine-grained ZK60 magnesium alloy processed by high-ratio differential speed rolling. Mater Sci Eng A. doi: 10.1016/j.msea.2009.08.064
  21. Lapovok R, Thomson PF, Cottam R et al (2005) Processing routes leading to superplastic behaviour of magnesium alloy ZK60. Mater Sci Eng A 410–411:390–393Google Scholar
  22. Laser T, Hartig C, Nurnberg MR et al (2008) The influence of calcium and cerium mischmetal on the microstructural evolution of Mg–3Al–1Zn during extrusion and resulting mechanical properties. Acta Mater 56:2791–2798CrossRefGoogle Scholar
  23. Laurent V, Jarry P, Regazzoni G et al (1992) Processing-microstructure relationships in compocast magnesium/SiC. J Mater Sci 27:4447–4459CrossRefGoogle Scholar
  24. Lim SCV, Gupta M (2006) Enhancing modulus and ductility of Mg/SiC composite through judicious selection of extrusion temperature and heat treatment. Mater Sci Technol 19:803–808CrossRefGoogle Scholar
  25. Morisada Y, Fujii H, Nagaoka T et al (2006a) MWCNTs/AZ31 surface composites fabricated by friction stir processing. Mater Sci Eng A 419:344–348CrossRefGoogle Scholar
  26. Morisada Y, Fujii H, Nagaoka T et al (2006b) Nanocrystallized magnesium alloy—uniform dispersion of C60 molecules. Scr Mater 55:1067–1070CrossRefGoogle Scholar
  27. Namilae S, Chandra N (2006) Role of atomic scale interfaces in the compressive behavior of carbon nanotubes in composites. Compos Sci Technol 66:2030–2038CrossRefGoogle Scholar
  28. Nieh TG, Schwartz AJ, Wadsworth J (1996) Superplasticity in a 17 vol.% SiC particulate-reinforced ZK60A magnesium composite (ZK60/SiC/17p). Mater Sci Eng A 208:30–36CrossRefGoogle Scholar
  29. Paramsothy M, Hassan SF, Srikanth N et al (2009a) Enhancing tensile/compressive response of magnesium alloy AZ31 by integrating with Al2O3 nanoparticles. Mater Sci Eng A 527:162–168CrossRefGoogle Scholar
  30. Paramsothy M, Hassan SF, Srikanth N et al (2009b) Simultaneously enhanced tensile and compressive response of AZ31-nanoAl2O3-AA5052 macrocomposite. J Mater Sci 44:4860–4873CrossRefGoogle Scholar
  31. Paramsothy M, Chan J, Kwok R et al (2011) Addition of CNTs to enhance tensile/compressive response of magnesium alloy ZK60A. Composites A 42:180–188CrossRefGoogle Scholar
  32. Reed-Hill RE (1964) Physical metallurgy principles, 2nd edn. D. Van Nostrand Company, New YorkGoogle Scholar
  33. Sasaki G, Wang WG, Hasegawa Y et al (2007) Surface treatment of Al18B4O33 whisker and development of Al18B4O33/ZK60 magnesium alloy matrix composite. J Mater Proc Technol 187–188:429–432CrossRefGoogle Scholar
  34. Szaraz Z, Trojanova Z, Cabbibo M et al (2007) Strengthening in a WE54 magnesium alloy containing SiC particles. Mater Sci Eng A 462:225–229CrossRefGoogle Scholar
  35. Tham LK, Gupta M, Cheng L (1999) Influence of processing parameters during disintegrated melt deposition processing on near net shape synthesis of aluminium based metal matrix composites. Mater Sci Technol 15:1139–1146Google Scholar
  36. Tissier A, Apelian D, Regazzoni G (1990) Magnesium rheocasting: a study of processing-microstructure interactions. J Mater Sci 25:1184–1196Google Scholar
  37. Towle DJ, Friend CM (1993) Comparison of compressive and tensile properties of magnesium based metal matrix composites. Mater Sci Technol 9:35–41Google Scholar
  38. Ugandhar S, Gupta M, Sinha SK (2006) Enhancing strength and ductility of Mg/SiC composites using recrystallization heat treatment. Compos Struct 72:266–272CrossRefGoogle Scholar
  39. Wang TS, Hou RJ, Lv B et al (2007) Microstructure evolution and deformation mechanism change in 0.98C–8.3Mn–0.04N steel during compressive deformation. Mater Sci Eng A 465:68–71CrossRefGoogle Scholar
  40. Watanabe H, Mukai T, Higashi K (1999) Superplasticity in a ZK60 magnesium alloy at low temperatures. Scr Mater 40(4):477–484CrossRefGoogle Scholar
  41. Yan F, Wu K, Wu GL et al (2003) Superplastic deformation behavior of a 19.7 vol.% β-SiCw/ZK60 composite. Mater Lett 57:1992–1996CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNational University of SingaporeSingaporeSingapore
  2. 2.Singapore Technologies Kinetics Ltd (ST Kinetics)SingaporeSingapore

Personalised recommendations