Skip to main content
Log in

The effective reinforcement of magnesium alloy ZK60A using Al2O3 nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

ZK60A nanocomposite containing Al2O3 nanoparticle reinforcement (50 nm average size) was fabricated using solidification processing followed by hot extrusion. The nanocomposite exhibited similar grain size to the monolithic alloy, reasonable Al2O3 nanoparticle distribution, non-dominant (0 0 0 2) texture in the longitudinal direction, and 15% higher hardness than the monolithic alloy. Compared to the monolithic alloy (in tension), the nanocomposite exhibited lower yield strength (0.2%TYS) (−4%) and higher ultimate strength (UTS), failure strain, and work of fracture (WOF) (+13%, +170%, and +200%, respectively). Compared to the monolithic alloy (in compression), the nanocomposite exhibited lower yield strength (0.2%CYS) (−5%) and higher ultimate strength (UCS), failure strain, and WOF (+6%, +41%, and +43%, respectively). The effects of Al2O3 nanoparticle addition on the enhancement of tensile and compressive properties of ZK60A are investigated in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Avedesian MM, Baker H (1999) ASM specialty handbook: magnesium and magnesium alloys. ASM International®, Novelty, OH

    Google Scholar 

  • Batra RC, Wei ZG (2007) Instability strain and shear band spacing in simple tensile/compressive deformations of thermoviscoplastic materials. Int J Impact Eng 34:448–463

    Article  Google Scholar 

  • Bohlen J, Yi SB, Swiostek J et al (2005) Microstructure and texture development during hydrostatic extrusion of magnesium alloy AZ31. Scripta Mater 53:259–264

    Article  CAS  Google Scholar 

  • Dai LH, Ling Z, Bai YL (2001) Size-dependent inelastic behavior of particle-reinforced metal–matrix composites. Compos Sci Technol 61:1057–1063

    Article  CAS  Google Scholar 

  • De Cicco M, Konishi H, Cao G et al (2009) Strong, ductile magnesium zinc nanocomposites. Metall Mater Trans A 40A:3038–3045

    Article  CAS  Google Scholar 

  • Eustathopoulos N, Nicholas MG, Drevet B (1999) Wettability at high temperatures, vol 3., Pergamon materials seriesPergamon Press, New York

    Google Scholar 

  • Feng Y, Zhou X, Min Z et al (2005) Superplasticity and texture of SiC whiskers in a magnesium-based composite. Scr Mater 53:361–365

    Article  CAS  Google Scholar 

  • Gilchrist JD (1989) Extraction metallurgy, 3rd edn. Pergamon Press, New York

    Google Scholar 

  • Goh CS, Wei J, Lee LC et al (2006) Development of novel carbon nanotube reinforced magnesium nanocomposites using the powder metallurgy technique. Nanotechnology 17:7–12

    Article  CAS  Google Scholar 

  • Gupta M, Lai MO, Soo CY (1996) Effect of type of processing on the microstructural features and mechanical properties of A1-Cu/SiC metal matrix composites. Mater Sci Eng A 210:114–122

    Article  Google Scholar 

  • Gupta M, Lai MO, Lim SC (1997) Regarding the processing associated microstructure and mechanical properties improvement of an Al-4.5Cu alloy. J Alloys Compd 260:250–255

    Article  CAS  Google Scholar 

  • Han BQ, Dunand DC (2000) Microstructure and mechanical properties of magnesium containing high volume fractions of yttria dispersoids. Mater Sci Eng A 277:297–304

    Article  Google Scholar 

  • Hassan SF, Gupta M (2005) Enhancing physical and mechanical properties of Mg using nanosized Al2O3 particulates as reinforcement. Metall Mater Trans A 36(8):2253–2258

    Article  Google Scholar 

  • Hassan SF, Gupta M (2006a) Effect of particulate size of Al2O3 reinforcement on microstructure and mechanical behavior of solidification processed elemental Mg. J Alloys Compd 419:84–90

    Article  CAS  Google Scholar 

  • Hassan SF, Gupta M (2006b) Effect of different types of nano-size oxide particulates on microstructural and mechanical properties of elemental Mg. J Mater Sci 41:2229–2236

    Article  CAS  Google Scholar 

  • Hassan SF, Gupta M (2006c) Effect of type of primary processing on the microstructure, CTE and mechanical properties of magnesium/alumina nanocomposites. Compos Struct 72:19–26

    Article  Google Scholar 

  • Hassan SF, Gupta M (2007) Development of nano-Y2O3 containing magnesium nanocomposites using solidification processing. J Alloys Compd 429:176–183

    Article  CAS  Google Scholar 

  • Hull D, Bacon DJ (2002) Introduction to dislocations, 4th edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Jayaramanavar P, Paramsothy M, Balaji A et al (2010) Tailoring the tensile/compressive response of magnesium alloy ZK60A using Al2O3 nanoparticles. J Mater Sci 45(5):1170–1178

    Article  CAS  Google Scholar 

  • Kim WJ, Kim MJ, Wang JY (2009) Superplastic behavior of a fine-grained ZK60 magnesium alloy processed by high-ratio differential speed rolling. Mater Sci Eng A. doi:10.1016/j.msea.2009.08.064

  • Lapovok R, Thomson PF, Cottam R et al (2005) Processing routes leading to superplastic behaviour of magnesium alloy ZK60. Mater Sci Eng A 410–411:390–393

    Google Scholar 

  • Laser T, Hartig C, Nurnberg MR et al (2008) The influence of calcium and cerium mischmetal on the microstructural evolution of Mg–3Al–1Zn during extrusion and resulting mechanical properties. Acta Mater 56:2791–2798

    Article  CAS  Google Scholar 

  • Laurent V, Jarry P, Regazzoni G et al (1992) Processing-microstructure relationships in compocast magnesium/SiC. J Mater Sci 27:4447–4459

    Article  CAS  Google Scholar 

  • Lim SCV, Gupta M (2006) Enhancing modulus and ductility of Mg/SiC composite through judicious selection of extrusion temperature and heat treatment. Mater Sci Technol 19:803–808

    Article  Google Scholar 

  • Morisada Y, Fujii H, Nagaoka T et al (2006a) MWCNTs/AZ31 surface composites fabricated by friction stir processing. Mater Sci Eng A 419:344–348

    Article  Google Scholar 

  • Morisada Y, Fujii H, Nagaoka T et al (2006b) Nanocrystallized magnesium alloy—uniform dispersion of C60 molecules. Scr Mater 55:1067–1070

    Article  CAS  Google Scholar 

  • Namilae S, Chandra N (2006) Role of atomic scale interfaces in the compressive behavior of carbon nanotubes in composites. Compos Sci Technol 66:2030–2038

    Article  CAS  Google Scholar 

  • Nieh TG, Schwartz AJ, Wadsworth J (1996) Superplasticity in a 17 vol.% SiC particulate-reinforced ZK60A magnesium composite (ZK60/SiC/17p). Mater Sci Eng A 208:30–36

    Article  Google Scholar 

  • Paramsothy M, Hassan SF, Srikanth N et al (2009a) Enhancing tensile/compressive response of magnesium alloy AZ31 by integrating with Al2O3 nanoparticles. Mater Sci Eng A 527:162–168

    Article  Google Scholar 

  • Paramsothy M, Hassan SF, Srikanth N et al (2009b) Simultaneously enhanced tensile and compressive response of AZ31-nanoAl2O3-AA5052 macrocomposite. J Mater Sci 44:4860–4873

    Article  CAS  Google Scholar 

  • Paramsothy M, Chan J, Kwok R et al (2011) Addition of CNTs to enhance tensile/compressive response of magnesium alloy ZK60A. Composites A 42:180–188

    Article  Google Scholar 

  • Reed-Hill RE (1964) Physical metallurgy principles, 2nd edn. D. Van Nostrand Company, New York

    Google Scholar 

  • Sasaki G, Wang WG, Hasegawa Y et al (2007) Surface treatment of Al18B4O33 whisker and development of Al18B4O33/ZK60 magnesium alloy matrix composite. J Mater Proc Technol 187–188:429–432

    Article  Google Scholar 

  • Szaraz Z, Trojanova Z, Cabbibo M et al (2007) Strengthening in a WE54 magnesium alloy containing SiC particles. Mater Sci Eng A 462:225–229

    Article  Google Scholar 

  • Tham LK, Gupta M, Cheng L (1999) Influence of processing parameters during disintegrated melt deposition processing on near net shape synthesis of aluminium based metal matrix composites. Mater Sci Technol 15:1139–1146

    CAS  Google Scholar 

  • Tissier A, Apelian D, Regazzoni G (1990) Magnesium rheocasting: a study of processing-microstructure interactions. J Mater Sci 25:1184–1196

    CAS  Google Scholar 

  • Towle DJ, Friend CM (1993) Comparison of compressive and tensile properties of magnesium based metal matrix composites. Mater Sci Technol 9:35–41

    CAS  Google Scholar 

  • Ugandhar S, Gupta M, Sinha SK (2006) Enhancing strength and ductility of Mg/SiC composites using recrystallization heat treatment. Compos Struct 72:266–272

    Article  Google Scholar 

  • Wang TS, Hou RJ, Lv B et al (2007) Microstructure evolution and deformation mechanism change in 0.98C–8.3Mn–0.04N steel during compressive deformation. Mater Sci Eng A 465:68–71

    Article  Google Scholar 

  • Watanabe H, Mukai T, Higashi K (1999) Superplasticity in a ZK60 magnesium alloy at low temperatures. Scr Mater 40(4):477–484

    Article  CAS  Google Scholar 

  • Yan F, Wu K, Wu GL et al (2003) Superplastic deformation behavior of a 19.7 vol.% β-SiCw/ZK60 composite. Mater Lett 57:1992–1996

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge National University of Singapore (NUS) and Temasek Defence Systems Institute (TDSI) for funding this research (TDSI/09-011/1A and WBS# R265000349).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paramsothy, M., Chan, J., Kwok, R. et al. The effective reinforcement of magnesium alloy ZK60A using Al2O3 nanoparticles. J Nanopart Res 13, 4855–4866 (2011). https://doi.org/10.1007/s11051-011-0464-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0464-2

Keywords

Navigation