Advertisement

Journal of Nanoparticle Research

, Volume 13, Issue 11, pp 6169–6180 | Cite as

Magnetic nanoparticles coated with polysaccharide polymers for potential biomedical applications

  • Cristina Ileana Covaliu
  • Daniela Berger
  • Cristian Matei
  • Lucian Diamandescu
  • Eugeniu Vasile
  • Camelia Cristea
  • Valentin Ionita
  • Horia Iovu
Special Issue: Nanostructured Materials 2010

Abstract

This study reports a two-steps route for obtaining magnetic nanoparticles–polysaccharide hybrid materials consisting of Fe3O4, NiFe2O4 and CuFe2O4 nanoparticles synthesis by coprecipitation method in the presence of a soft template followed by coating of ferrite nanoparticles of 8–10-nm size range with polysaccharide type polymers—sodium alginate or chitosan. Magnetic oxide nanoparticles and the corresponding hybrid materials were characterized by X-ray diffraction (XRD), Mössbauer spectroscopy, atomic absorption spectroscopy (AAS), FTIR spectroscopy, scanning and transmission electron microscopy (SEM and TEM) and specific surface area measurements. The vibrating sample magnetometry confirms the superparamagnetic properties of the synthesized ferrites and hybrids. Using this route, the percent of magnetic nanoparticles retained in chitosan-based hybrid materials is nearly double in comparison with that of sodium alginate–based materials. The biological activity tests on Escherichia coli ATCC 25922, Pseudomonas aeroginosa ATCC 27853, Staphylococcus aureus ATCC 25923 and Candida scotti microorganisms show the non-toxic properties of prepared hybrid materials.

Keywords

Magnetic nanoparticles Ferrites Sodium alginate Chitosan Nanomedicine 

Notes

Acknowledgments

Authors recognise financial support from the European Social Fund through POSDRU/89/1.5/S/54785 project: “Postdoctoral Program for Advanced Research” in the field of nanomaterials.

References

  1. Azzazy HME, Mansour MMH (2009) In vitro diagnostic prospects of nanoparticles. Clin Chim Acta 403:1–8CrossRefGoogle Scholar
  2. Bhumkar DR, Pokharkar VB (2006) Studies on effect of pH on cross-linking of chitosan with sodium tripolyphosphate. AAPS PharmSciTech 7: Article 50. doi: 10.1208/pt070250
  3. Bolong Y, Caihua N, Cheng X, Changping Z, Bo H (2010) Hydrophobic modification of sodium alginate and its application in drug controlled release. Bioprocess Biosyst Eng 33:457–463CrossRefGoogle Scholar
  4. Covaliu IC, Georgescu G, Jitaru I, Neamtu J, Malaeru T, Oprea O, Patroi E (2009) Synthesis and characterization of a hydroxyapatite coated magnetite for potential cancer treatment. Rev Chim 60:1254–1257Google Scholar
  5. Covaliu CI, Matei C, Litescu S, Eremia SAM, Stanică N, Diamandescu L, Ianculescu A, Jitaru I, Berger D (2010) Radical scavenger properties of oxide nanoparticles stabilized with biopolymer matrix. Rev Mater Plast 47:5–10Google Scholar
  6. Guo S, Li D, Zhang L, Li J, Wang E (2009) Monodisperse mesoporous superparamagnetic single-crystal magnetite nanoparticles for drug delivery. Biomaterials 30:1881–1889CrossRefGoogle Scholar
  7. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021CrossRefGoogle Scholar
  8. Hernández R, Zamora-Mora V, Sibaja-Ballestero M, Vega-Baudrit J, Lopez D, Mijangos C (2009) Influence of iron oxide nanoparticles on the rheological properties of hybrid chitosan ferrogels. J Colloid Interf Sci 33:53–59CrossRefGoogle Scholar
  9. Hui LM, Yu FX, Xian RQ, Yoshie M, Tsuneji N (2008) Superparamagnetic iron oxide nanoparticles stabilized by alginate: Pharmacokinetics, tissue distribution and applications in detecting liver cancers. Int J Pharm 354:217–226CrossRefGoogle Scholar
  10. Ma H, Qi X, Maitani Y, Negai T (2007) Preparation and characterization of superparamagetic iron oxide nanoparticles stabilized by sodium alginate. Int J Pharm 333:177–186CrossRefGoogle Scholar
  11. Ravi Kumar MNV (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27CrossRefGoogle Scholar
  12. Sanvicens N, Marco MP (2008) Multifactional nanoparticles: properties and prospects for their use in human medicine. Trends Biotechnol 26:425–429CrossRefGoogle Scholar
  13. Sun C, Lee JSH, Zhang M (2008) Magnetic nanoparticles in MR imaginig and drug delivery. Adv Drug Deliv Rev 60:1252–1265CrossRefGoogle Scholar
  14. Tamaura Y, Buduan PV, Katsura T (1981) Studies in the oxidation of iron (II) ion during formation of Fe304 and a-FeO(OH) by air oxidation of Fe[OH]2 suspensions. J Chem Soc Dalton Trans 1807–1811Google Scholar
  15. Vijayakumar R, Koltypin Y, Felner I, Gedanken A (2000) Sonochemical synthesis and characterization of pure nanometer-sized Fe3O4 particles. Mater Sci Eng A 286:101–105CrossRefGoogle Scholar
  16. Wang L, Shelton RM, Cooper PR, Lawson M, Triffitt JT, Barralet JE (2003) Evaluation of sodium alginate for bone marrow cell tissue engineering. Biomaterials 24:3475–3481CrossRefGoogle Scholar
  17. Wang Y, Baoqiang L, Zhou Y, Jia D (2008) Chitosan induced synthesis of magnetite nanoparticles via iron ions assembly. Polym Adv Technol 19:1256–1261CrossRefGoogle Scholar
  18. Wen X, Yang J, He B, Gu Z (2007) Preparation of monodisperse magnetite nanoparticles under mild conditions. Curr Appl Phys 8:535–541CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Cristina Ileana Covaliu
    • 1
  • Daniela Berger
    • 1
  • Cristian Matei
    • 1
  • Lucian Diamandescu
    • 2
  • Eugeniu Vasile
    • 3
  • Camelia Cristea
    • 1
  • Valentin Ionita
    • 4
  • Horia Iovu
    • 1
  1. 1.University “Politehnica” of BucharestFaculty of Applied Chemistry and Materials ScienceBucharestRomania
  2. 2.National Institute of Materials PhysicsBucharestRomania
  3. 3.MetavResearch and DevelopmentBucharestRomania
  4. 4.University “Politehnica” of BucharestFaculty of Electrical EngineeringBucharestRomania

Personalised recommendations