Journal of Nanoparticle Research

, Volume 13, Issue 10, pp 4717–4729 | Cite as

Multifunctional iron platinum stealth immunomicelles: targeted detection of human prostate cancer cells using both fluorescence and magnetic resonance imaging

  • Robert M. Taylor
  • Dale L. Huber
  • Todd C. Monson
  • Abdul-Mehdi S. Ali
  • Marco Bisoffi
  • Laurel O. Sillerud
Research Paper


Superparamagnetic iron oxide nanoparticles (SPIONs) are the most common type of contrast agents used in contrast agent-enhanced magnetic resonance imaging (MRI). Still, there is a great deal of room for improvement, and nanoparticles with increased MRI relaxivities are needed to increase the contrast enhancement in MRI applied to various medical conditions including cancer. We report the synthesis of superparamagnetic iron platinum nanoparticles (SIPPs) and subsequent encapsulation using PEGylated phospholipids to create stealth immunomicelles (DSPE-SIPPs) that can be specifically targeted to human prostate cancer cell lines and detected using both MRI and fluorescence imaging. SIPP cores and DSPE-SIPPs were 8.5 ± 1.6 nm and 42.9 ± 8.2 nm in diameter, respectively, and the SIPPs had a magnetic moment of 120 A m2/kg iron. J591, a monoclonal antibody against prostate specific membrane antigen (PSMA), was conjugated to the DSPE-SIPPs (J591-DSPE-SIPPs), and specific targeting of J591-DSPE-SIPPs to PSMA-expressing human prostate cancer cell lines was demonstrated using fluorescence confocal microscopy. The transverse relaxivity of the DSPE-SIPPs, measured at 4.7 Tesla, was 300.6 ± 8.5 s−1 mM−1, which is 13-fold better than commercially available SPIONs (23.8 ± 6.9 s−1 mM−1) and ~3-fold better than reported relaxivities for Feridex® and Resovist®. Our data suggest that J591-DSPE-SIPPs specifically target human prostate cancer cells in vitro, are superior contrast agents in T 2-weighted MRI, and can be detected using fluorescence imaging. To our knowledge, this is the first report on the synthesis of multifunctional SIPP micelles and using SIPPs for the specific detection of prostate cancer.


Iron platinum Micelle Prostate cancer Contrast agent Magnetic resonance imaging Fluorescent nanoparticle Nanomedicine 



The authors acknowledge the support from the National Institutes of Health 5RO1CA123194. This study was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility at Los Alamos National Laboratory (Contract DE-AC52-06NA25396), and Sandia National Laboratories (Contract DE-AC04-94AL85000). TEM images were generated at the University of New Mexico Electron Microscopy Facility. Confocal images were generated in the University of New Mexico & Cancer Center Fluorescence Microscopy Shared Resource, funded as detailed on: Some experiments used the facilities provided by the Keck-UNM Genomics Resource, a facility supported by a grant from the WM Keck Foundation as well as the State of New Mexico and the UNM Cancer Research and Treatment Center. The authors would like to thank Dr. Stephen Jett for TEM expertise and Dr. Rebecca Lee and Genevieve Phillips for their expert guidance with confocal microscopy.


  1. Afnan J, Tempany CM (2010) Update on prostate imaging. Urol Clin North Am 37 (1):23–25, Table of contents. doi: 10.1016/j.ucl.2009.11.009 Google Scholar
  2. Andrew W, Wender RC, Etzioni RB, Thompson IM, D’Amico AV, Volk RJ, Brooks DD, Dash C, Guessous I, Andrews K, DeSantis C, Smith RA (2010) American cancer society guideline for the early detection of prostate cancer. CA Cancer J Clin 60(2):70–98CrossRefGoogle Scholar
  3. Antoniak C, Lindner J, Spasova M, Sudfeld D, Acet M, Farle M, Fauth K, Wiedwald U, Boyen HG, Ziemann P, Wilhelm F, Rogalev A, Sun S (2006) Enhanced orbital magnetism in Fe(50)Pt(50) nanoparticles. Phys Rev Lett 97 (11):117201–117204. doi: 10.1103/PhysRevLett.97.117201 Google Scholar
  4. Barmak K, Kim J, Lewis LH, Coffey KR, Toney MF, Kellock AJ, Thiele JU (2004) Stoichiometry: anisotropy connections in epitaxial L10 FePt(001) films. Paper presented at the Magnetism and Magnetic Materials Conference, Anaheim, CA, USAGoogle Scholar
  5. Basit L, Nepijko SA, Shukoor I, Ksenofontov V, Klimenkov M, Fecher GH, Schonhense G, Tremel W, Felser C (2009) Structure and magnetic properties of iron–platinum particles with y-ferric-oxide shell. Appl Phys A 94:619–625CrossRefGoogle Scholar
  6. Bhalerao GM, Sinha AK, Srivastava AK (2009) Synthesis of monodispersed gamma-Fe2O3 nanoparticles using ferrocene as a novel precursor. J Nanosci Nanotechnol 9(9):5502–5506CrossRefGoogle Scholar
  7. Boyen HG, Fauth K, Branko S, Ziemann P, Kastle G, Weigl F, Banhart F, Hessler M, Schutz G, Gajbhiye NS, Ellrich J, Hahn H, Buttner M, Garnier MG, Oelhafen P (2005) Electronic and magnetic properties of ligand-free FePt nanoparticles. Adv Mater 17(5):574–578. doi: 10.1002/adma.200400748 CrossRefGoogle Scholar
  8. Chang SS, Gaudin PB, Reuter VE, O’Keefe DS, Bacich DJ, Heston WD (1999) Prostate-specific membrane antigen: much more than a prostate cancer marker. Mol Urol 3(3):313–320Google Scholar
  9. Chen S, Wang L, Duce SL, Brown S, Lee S, Melzer A, Cuschieri A, Andre P (2010) Engineered biocompatible nanoparticles for in vivo imaging applications. J Am Chem Soc 132(42):15022–15029. doi: 10.1021/ja106543j CrossRefGoogle Scholar
  10. Demortiere A, Panissod P, Pichon BP, Pourroy G, Guillon D, Donnio B, Begin-Colin S (2010) Size-dependent properties of magnetic iron oxide nanocrystals. Nanoscale. doi: 10.1039/c0nr00521e
  11. Figuerola A, Fiore A, Di Corato R, Falqui A, Giannini C, Micotti E, Lascialfari A, Corti M, Cingolani R, Pellegrino T, Cozzoli PD, Manna L (2008) One-pot synthesis and characterization of size-controlled bimagnetic FePt-iron oxide heterodimer nanocrystals. J Am Chem Soc 130(4):1477–1487. doi: 10.1021/ja078034v CrossRefGoogle Scholar
  12. Ghosh A, Heston WD (2004) Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. J Cell Biochem 91(3):528–539. doi: 10.1002/jcb.10661 CrossRefGoogle Scholar
  13. Han L, Wiedwald U, Kuerbanjiang B, Ziemann P (2009) Fe oxidation versus Pt segregation in FePt nanoparticles and thin films. Nanotechnology 20 (28):285706. doi: 10.1088/0957-4484/20/28/285706
  14. Hinds KA, Hill JM, Shapiro EM, Laukkanen MO, Silva AC, Combs CA, Varney TR, Balaban RS, Koretsky AP, Dunbar CE (2003) Highly efficient endosomal labeling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells. Blood 102(3):867–872. doi: 10.1182/blood-2002-12-3669 CrossRefGoogle Scholar
  15. Inomata K, Sawa T, Hashimoto S (1988) Effect of large boron additions to magnetically hard Fe-Pt alloys. J Appl Phys 64(5):2537–2540CrossRefGoogle Scholar
  16. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60(5):277–300. doi: 10.3322/caac.20073 CrossRefGoogle Scholar
  17. Johnsson M, Edwards K (2003) Liposomes, disks, and spherical micelles: aggregate structure in mixtures of gel phase phosphatidylcholines and poly(ethylene glycol)-phospholipids. Biophys J 85(6):3839–3847. doi: 10.1016/S0006-3495(03)74798-5 CrossRefGoogle Scholar
  18. Kim J, Rong C, Liu P, Sun S (2009) Dispersible ferromagnetic FePt nanoparticles. Adv Mater 21:906–909. doi: 10.1002/adma.200801620 CrossRefGoogle Scholar
  19. Kuroda K, Liu H, Kim S, Guo M, Navarro V, Bander NH (2010) Saporin toxin-conjugated monoclonal antibody targeting prostate-specific membrane antigen has potent anticancer activity. Prostate 70(12):1286–1294. doi: 10.1002/pros.21164 Google Scholar
  20. Lee JH, Huh YM, Jun YW, Seo JW, Jang JT, Song HT, Kim S, Cho EJ, Yoon HG, Suh JS, Cheon J (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13(1):95–99. doi: 10.1038/nm1467 CrossRefGoogle Scholar
  21. Maenosono S, Suzukia T, Saita S (2008) Superparamagnetic FePt nanoparticles as excellent MRI contrast agents. J Magn Magn Mater 320:L79–L83CrossRefGoogle Scholar
  22. Miltenyi S, Muller W, Weichel W, Radbruch A (1990) High gradient magnetic cell separation with MACS. Cytometry 11(2):231–238. doi: 10.1002/cyto.990110203 CrossRefGoogle Scholar
  23. Morales MP, Bedard MF, Roca AG, Presa P, Hernando A, Zhang F, Zanella M, Zahoor AA, Sukhorukov GB, del Mercato LL, Parak WJ (2009) Relaxation times of colloidal iron platinum in polymer matrixes. J Mater Chem 19:6381–6386CrossRefGoogle Scholar
  24. Pasut G, Veronese FM (2009) PEGylation for improving the effectiveness of therapeutic biomolecules. Drugs Today (Barc) 45(9):687–695. doi: 1396674/dot.2009.45.9.1416421 CrossRefGoogle Scholar
  25. Patel D, Kell A, Simard B, Xiang B, Lin HY, Tian G (2010) The cell labeling efficacy, cytotoxicity and relaxivity of copper-activated MRI/PET imaging contrast agents. Biomaterials. doi: 10.1016/j.biomaterials.2010.10.013
  26. Peng XH, Qian X, Mao H, Wang AY, Chen ZG, Nie S, Shin DM (2008) Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int J Nanomedicine 3(3):311–321Google Scholar
  27. Rabbani F, Stroumbakis N, Kava BR, Cookson MS, Fair WR (1998) Incidence and clinical significance of false-negative sextant prostate biopsies. J Urol 159(4):1247–1250CrossRefGoogle Scholar
  28. Rajasekaran AK, Anilkumar G, Christiansen JJ (2005) Is prostate-specific membrane antigen a multifunctional protein? Am J Physiol Cell Physiol 288(5):C975–C981. doi: 10.1152/ajpcell.00506.2004 CrossRefGoogle Scholar
  29. Rasband WS (1997-2009) ImageJ. US National Institutes of Health, Betesda, Maryland, USA. http://rsbinfonihgov/ij/
  30. Salgueirino-Maceira V, Liz-Marzan LM, Farle M (2004) Water-based ferrofluids from FexPt1-x nanoparticles synthesized in organic media. Langmuir 20(16):6946–6950. doi: 10.1021/la049300a CrossRefGoogle Scholar
  31. Schaller V, Wahnstrom G, Sanz-Velasco A, Enoksson P, Johansson C (2010) Determination of nanocrystal size distribution in magnetic multicore particles including dipole-dipole interactions and magnetic anisotropy: a Monte Carlo study. In: Hafeli U, Schutt W, Zborowski M (eds) Eighth International Conference on the Scientific and Clinical Applications of Magnetic Carriers, 2010. American Institute of Physics, Rostock, GermanyGoogle Scholar
  32. Serda RE, Adolphi NL, Bisoffi M, Sillerud LO (2007) Targeting and cellular trafficking of magnetic nanoparticles for prostate cancer imaging. Mol Imaging 6(4):277–288Google Scholar
  33. Serda RE, Godin B, Blanco E, Chiappini C, Ferrari M (2010) Multi-stage delivery nano-particle systems for therapeutic applications. Biochim Biophys Acta. doi: 10.1016/j.bbagen.2010.05.004
  34. Sobel RE, Sadar MD (2005) Cell lines used in prostate cancer research: a compendium of old and new lines—part 1. J Urol 173(2):342–359. doi: 10.1097/01.ju.0000141580.30910.57 CrossRefGoogle Scholar
  35. Sohn BH, Cohen RE, Papaefthymiou GC (1998) Magnetic properties of iron oxide nanoclusters within microdomains of block copolymers. J Magn Magn Mater 182(1–2):216–224. doi: 10.1016/S0304-8853(97)00675-6 CrossRefGoogle Scholar
  36. Sun S (2006) Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv Mater 18:403Google Scholar
  37. Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287(5460):1989–1992CrossRefGoogle Scholar
  38. Varanda LC, Jafelicci M Jr (2006) Self-assembled FePt nanocrystals with large coercivity: reduction of the fcc-to-L1(0) ordering temperature. J Am Chem Soc 128(34):11062–11066. doi: 10.1021/ja060711i CrossRefGoogle Scholar
  39. Wang YX, Hussain SM, Krestin GP (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 11(11):2319–2331. doi: 10.1007/s003300100908 CrossRefGoogle Scholar
  40. Wolf P, Freudenberg N, Buhler P, Alt K, Schultze-Seemann W, Wetterauer U, Elsasser-Beile U (2010) Three conformational antibodies specific for different PSMA epitopes are promising diagnostic and therapeutic tools for prostate cancer. Prostate 70(5):562–569. doi: 10.1002/pros.21090 Google Scholar
  41. Xu C, Yuan Z, Kohler N, Kim J, Chung MA, Sun S (2009) FePt nanoparticles as an Fe reservoir for controlled Fe release and tumor inhibition. J Am Chem Soc 131(42):15346–15351. doi: 10.1021/ja905938a CrossRefGoogle Scholar
  42. Yang HM, Park CW, Woo MA, Kim MI, Jo YM, Park HG, Kim JD (2010) HER2/neu antibody conjugated poly(amino acid)-coated iron oxide nanoparticles for breast cancer MR imaging. Biomacromolecules. doi: 10.1021/bm100560m
  43. Zeng H, Li J, Liu JP, Wang ZL, Sun S (2002) Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature 420(6914):395–398. doi: 10.1038/nature01208 CrossRefGoogle Scholar
  44. Zhang C, Liu T, Gao J, Su Y, Shi C (2010) Recent development and application of magnetic nanoparticles for cell labeling and imaging. Mini Rev Med Chem 10(3):193–202CrossRefGoogle Scholar
  45. Zhao F, Rutherford M, Grisham SY, Peng X (2009) Formation of monodisperse FePt alloy nanocrystals using air-stable precursors: fatty acids as alloying mediator and reductant for Fe3 + precursors. J Am Chem Soc 131(14):5350–5358. doi: 10.1021/ja900202t CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Robert M. Taylor
    • 1
  • Dale L. Huber
    • 2
  • Todd C. Monson
    • 3
  • Abdul-Mehdi S. Ali
    • 4
  • Marco Bisoffi
    • 1
  • Laurel O. Sillerud
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyUniversity of New Mexico School of MedicineAlbuquerqueUSA
  2. 2.Center for Integrated NanotechnologiesSandia National LaboratoriesAlbuquerqueUSA
  3. 3.Nanomaterials Sciences DepartmentSandia National LaboratoriesAlbuquerqueUSA
  4. 4.Department of Earth and Planetary SciencesUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations