Skip to main content

Advertisement

Log in

Multifunctional iron platinum stealth immunomicelles: targeted detection of human prostate cancer cells using both fluorescence and magnetic resonance imaging

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Superparamagnetic iron oxide nanoparticles (SPIONs) are the most common type of contrast agents used in contrast agent-enhanced magnetic resonance imaging (MRI). Still, there is a great deal of room for improvement, and nanoparticles with increased MRI relaxivities are needed to increase the contrast enhancement in MRI applied to various medical conditions including cancer. We report the synthesis of superparamagnetic iron platinum nanoparticles (SIPPs) and subsequent encapsulation using PEGylated phospholipids to create stealth immunomicelles (DSPE-SIPPs) that can be specifically targeted to human prostate cancer cell lines and detected using both MRI and fluorescence imaging. SIPP cores and DSPE-SIPPs were 8.5 ± 1.6 nm and 42.9 ± 8.2 nm in diameter, respectively, and the SIPPs had a magnetic moment of 120 A m2/kg iron. J591, a monoclonal antibody against prostate specific membrane antigen (PSMA), was conjugated to the DSPE-SIPPs (J591-DSPE-SIPPs), and specific targeting of J591-DSPE-SIPPs to PSMA-expressing human prostate cancer cell lines was demonstrated using fluorescence confocal microscopy. The transverse relaxivity of the DSPE-SIPPs, measured at 4.7 Tesla, was 300.6 ± 8.5 s−1 mM−1, which is 13-fold better than commercially available SPIONs (23.8 ± 6.9 s−1 mM−1) and ~3-fold better than reported relaxivities for Feridex® and Resovist®. Our data suggest that J591-DSPE-SIPPs specifically target human prostate cancer cells in vitro, are superior contrast agents in T 2-weighted MRI, and can be detected using fluorescence imaging. To our knowledge, this is the first report on the synthesis of multifunctional SIPP micelles and using SIPPs for the specific detection of prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Afnan J, Tempany CM (2010) Update on prostate imaging. Urol Clin North Am 37 (1):23–25, Table of contents. doi:10.1016/j.ucl.2009.11.009

    Google Scholar 

  • Andrew W, Wender RC, Etzioni RB, Thompson IM, D’Amico AV, Volk RJ, Brooks DD, Dash C, Guessous I, Andrews K, DeSantis C, Smith RA (2010) American cancer society guideline for the early detection of prostate cancer. CA Cancer J Clin 60(2):70–98

    Article  Google Scholar 

  • Antoniak C, Lindner J, Spasova M, Sudfeld D, Acet M, Farle M, Fauth K, Wiedwald U, Boyen HG, Ziemann P, Wilhelm F, Rogalev A, Sun S (2006) Enhanced orbital magnetism in Fe(50)Pt(50) nanoparticles. Phys Rev Lett 97 (11):117201–117204. doi:10.1103/PhysRevLett.97.117201

    Google Scholar 

  • Barmak K, Kim J, Lewis LH, Coffey KR, Toney MF, Kellock AJ, Thiele JU (2004) Stoichiometry: anisotropy connections in epitaxial L10 FePt(001) films. Paper presented at the Magnetism and Magnetic Materials Conference, Anaheim, CA, USA

  • Basit L, Nepijko SA, Shukoor I, Ksenofontov V, Klimenkov M, Fecher GH, Schonhense G, Tremel W, Felser C (2009) Structure and magnetic properties of iron–platinum particles with y-ferric-oxide shell. Appl Phys A 94:619–625

    Article  CAS  Google Scholar 

  • Bhalerao GM, Sinha AK, Srivastava AK (2009) Synthesis of monodispersed gamma-Fe2O3 nanoparticles using ferrocene as a novel precursor. J Nanosci Nanotechnol 9(9):5502–5506

    Article  CAS  Google Scholar 

  • Boyen HG, Fauth K, Branko S, Ziemann P, Kastle G, Weigl F, Banhart F, Hessler M, Schutz G, Gajbhiye NS, Ellrich J, Hahn H, Buttner M, Garnier MG, Oelhafen P (2005) Electronic and magnetic properties of ligand-free FePt nanoparticles. Adv Mater 17(5):574–578. doi:10.1002/adma.200400748

    Article  CAS  Google Scholar 

  • Chang SS, Gaudin PB, Reuter VE, O’Keefe DS, Bacich DJ, Heston WD (1999) Prostate-specific membrane antigen: much more than a prostate cancer marker. Mol Urol 3(3):313–320

    CAS  Google Scholar 

  • Chen S, Wang L, Duce SL, Brown S, Lee S, Melzer A, Cuschieri A, Andre P (2010) Engineered biocompatible nanoparticles for in vivo imaging applications. J Am Chem Soc 132(42):15022–15029. doi:10.1021/ja106543j

    Article  CAS  Google Scholar 

  • Demortiere A, Panissod P, Pichon BP, Pourroy G, Guillon D, Donnio B, Begin-Colin S (2010) Size-dependent properties of magnetic iron oxide nanocrystals. Nanoscale. doi:10.1039/c0nr00521e

  • Figuerola A, Fiore A, Di Corato R, Falqui A, Giannini C, Micotti E, Lascialfari A, Corti M, Cingolani R, Pellegrino T, Cozzoli PD, Manna L (2008) One-pot synthesis and characterization of size-controlled bimagnetic FePt-iron oxide heterodimer nanocrystals. J Am Chem Soc 130(4):1477–1487. doi:10.1021/ja078034v

    Article  CAS  Google Scholar 

  • Ghosh A, Heston WD (2004) Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. J Cell Biochem 91(3):528–539. doi:10.1002/jcb.10661

    Article  CAS  Google Scholar 

  • Han L, Wiedwald U, Kuerbanjiang B, Ziemann P (2009) Fe oxidation versus Pt segregation in FePt nanoparticles and thin films. Nanotechnology 20 (28):285706. doi:10.1088/0957-4484/20/28/285706

  • Hinds KA, Hill JM, Shapiro EM, Laukkanen MO, Silva AC, Combs CA, Varney TR, Balaban RS, Koretsky AP, Dunbar CE (2003) Highly efficient endosomal labeling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells. Blood 102(3):867–872. doi:10.1182/blood-2002-12-3669

    Article  CAS  Google Scholar 

  • Inomata K, Sawa T, Hashimoto S (1988) Effect of large boron additions to magnetically hard Fe-Pt alloys. J Appl Phys 64(5):2537–2540

    Article  CAS  Google Scholar 

  • Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60(5):277–300. doi:10.3322/caac.20073

    Article  Google Scholar 

  • Johnsson M, Edwards K (2003) Liposomes, disks, and spherical micelles: aggregate structure in mixtures of gel phase phosphatidylcholines and poly(ethylene glycol)-phospholipids. Biophys J 85(6):3839–3847. doi:10.1016/S0006-3495(03)74798-5

    Article  CAS  Google Scholar 

  • Kim J, Rong C, Liu P, Sun S (2009) Dispersible ferromagnetic FePt nanoparticles. Adv Mater 21:906–909. doi:10.1002/adma.200801620

    Article  CAS  Google Scholar 

  • Kuroda K, Liu H, Kim S, Guo M, Navarro V, Bander NH (2010) Saporin toxin-conjugated monoclonal antibody targeting prostate-specific membrane antigen has potent anticancer activity. Prostate 70(12):1286–1294. doi:10.1002/pros.21164

    CAS  Google Scholar 

  • Lee JH, Huh YM, Jun YW, Seo JW, Jang JT, Song HT, Kim S, Cho EJ, Yoon HG, Suh JS, Cheon J (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13(1):95–99. doi:10.1038/nm1467

    Article  CAS  Google Scholar 

  • Maenosono S, Suzukia T, Saita S (2008) Superparamagnetic FePt nanoparticles as excellent MRI contrast agents. J Magn Magn Mater 320:L79–L83

    Article  CAS  Google Scholar 

  • Miltenyi S, Muller W, Weichel W, Radbruch A (1990) High gradient magnetic cell separation with MACS. Cytometry 11(2):231–238. doi:10.1002/cyto.990110203

    Article  CAS  Google Scholar 

  • Morales MP, Bedard MF, Roca AG, Presa P, Hernando A, Zhang F, Zanella M, Zahoor AA, Sukhorukov GB, del Mercato LL, Parak WJ (2009) Relaxation times of colloidal iron platinum in polymer matrixes. J Mater Chem 19:6381–6386

    Article  CAS  Google Scholar 

  • Pasut G, Veronese FM (2009) PEGylation for improving the effectiveness of therapeutic biomolecules. Drugs Today (Barc) 45(9):687–695. doi:1396674/dot.2009.45.9.1416421

    Article  CAS  Google Scholar 

  • Patel D, Kell A, Simard B, Xiang B, Lin HY, Tian G (2010) The cell labeling efficacy, cytotoxicity and relaxivity of copper-activated MRI/PET imaging contrast agents. Biomaterials. doi:10.1016/j.biomaterials.2010.10.013

  • Peng XH, Qian X, Mao H, Wang AY, Chen ZG, Nie S, Shin DM (2008) Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int J Nanomedicine 3(3):311–321

    CAS  Google Scholar 

  • Rabbani F, Stroumbakis N, Kava BR, Cookson MS, Fair WR (1998) Incidence and clinical significance of false-negative sextant prostate biopsies. J Urol 159(4):1247–1250

    Article  CAS  Google Scholar 

  • Rajasekaran AK, Anilkumar G, Christiansen JJ (2005) Is prostate-specific membrane antigen a multifunctional protein? Am J Physiol Cell Physiol 288(5):C975–C981. doi:10.1152/ajpcell.00506.2004

    Article  CAS  Google Scholar 

  • Rasband WS (1997-2009) ImageJ. US National Institutes of Health, Betesda, Maryland, USA. http://rsbinfonihgov/ij/

  • Salgueirino-Maceira V, Liz-Marzan LM, Farle M (2004) Water-based ferrofluids from FexPt1-x nanoparticles synthesized in organic media. Langmuir 20(16):6946–6950. doi:10.1021/la049300a

    Article  CAS  Google Scholar 

  • Schaller V, Wahnstrom G, Sanz-Velasco A, Enoksson P, Johansson C (2010) Determination of nanocrystal size distribution in magnetic multicore particles including dipole-dipole interactions and magnetic anisotropy: a Monte Carlo study. In: Hafeli U, Schutt W, Zborowski M (eds) Eighth International Conference on the Scientific and Clinical Applications of Magnetic Carriers, 2010. American Institute of Physics, Rostock, Germany

  • Serda RE, Adolphi NL, Bisoffi M, Sillerud LO (2007) Targeting and cellular trafficking of magnetic nanoparticles for prostate cancer imaging. Mol Imaging 6(4):277–288

    CAS  Google Scholar 

  • Serda RE, Godin B, Blanco E, Chiappini C, Ferrari M (2010) Multi-stage delivery nano-particle systems for therapeutic applications. Biochim Biophys Acta. doi:10.1016/j.bbagen.2010.05.004

  • Sobel RE, Sadar MD (2005) Cell lines used in prostate cancer research: a compendium of old and new lines—part 1. J Urol 173(2):342–359. doi:10.1097/01.ju.0000141580.30910.57

    Article  CAS  Google Scholar 

  • Sohn BH, Cohen RE, Papaefthymiou GC (1998) Magnetic properties of iron oxide nanoclusters within microdomains of block copolymers. J Magn Magn Mater 182(1–2):216–224. doi:10.1016/S0304-8853(97)00675-6

    Article  CAS  Google Scholar 

  • Sun S (2006) Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv Mater 18:403

    Google Scholar 

  • Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287(5460):1989–1992

    Article  CAS  Google Scholar 

  • Varanda LC, Jafelicci M Jr (2006) Self-assembled FePt nanocrystals with large coercivity: reduction of the fcc-to-L1(0) ordering temperature. J Am Chem Soc 128(34):11062–11066. doi:10.1021/ja060711i

    Article  CAS  Google Scholar 

  • Wang YX, Hussain SM, Krestin GP (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 11(11):2319–2331. doi:10.1007/s003300100908

    Article  CAS  Google Scholar 

  • Wolf P, Freudenberg N, Buhler P, Alt K, Schultze-Seemann W, Wetterauer U, Elsasser-Beile U (2010) Three conformational antibodies specific for different PSMA epitopes are promising diagnostic and therapeutic tools for prostate cancer. Prostate 70(5):562–569. doi:10.1002/pros.21090

    CAS  Google Scholar 

  • Xu C, Yuan Z, Kohler N, Kim J, Chung MA, Sun S (2009) FePt nanoparticles as an Fe reservoir for controlled Fe release and tumor inhibition. J Am Chem Soc 131(42):15346–15351. doi:10.1021/ja905938a

    Article  CAS  Google Scholar 

  • Yang HM, Park CW, Woo MA, Kim MI, Jo YM, Park HG, Kim JD (2010) HER2/neu antibody conjugated poly(amino acid)-coated iron oxide nanoparticles for breast cancer MR imaging. Biomacromolecules. doi:10.1021/bm100560m

  • Zeng H, Li J, Liu JP, Wang ZL, Sun S (2002) Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature 420(6914):395–398. doi:10.1038/nature01208

    Article  CAS  Google Scholar 

  • Zhang C, Liu T, Gao J, Su Y, Shi C (2010) Recent development and application of magnetic nanoparticles for cell labeling and imaging. Mini Rev Med Chem 10(3):193–202

    Article  Google Scholar 

  • Zhao F, Rutherford M, Grisham SY, Peng X (2009) Formation of monodisperse FePt alloy nanocrystals using air-stable precursors: fatty acids as alloying mediator and reductant for Fe3 + precursors. J Am Chem Soc 131(14):5350–5358. doi:10.1021/ja900202t

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support from the National Institutes of Health 5RO1CA123194. This study was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility at Los Alamos National Laboratory (Contract DE-AC52-06NA25396), and Sandia National Laboratories (Contract DE-AC04-94AL85000). TEM images were generated at the University of New Mexico Electron Microscopy Facility. Confocal images were generated in the University of New Mexico & Cancer Center Fluorescence Microscopy Shared Resource, funded as detailed on: http://hsc.unm.edu/crtc/microscopy/Facility.html. Some experiments used the facilities provided by the Keck-UNM Genomics Resource, a facility supported by a grant from the WM Keck Foundation as well as the State of New Mexico and the UNM Cancer Research and Treatment Center. The authors would like to thank Dr. Stephen Jett for TEM expertise and Dr. Rebecca Lee and Genevieve Phillips for their expert guidance with confocal microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Taylor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, R.M., Huber, D.L., Monson, T.C. et al. Multifunctional iron platinum stealth immunomicelles: targeted detection of human prostate cancer cells using both fluorescence and magnetic resonance imaging. J Nanopart Res 13, 4717–4729 (2011). https://doi.org/10.1007/s11051-011-0439-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0439-3

Keywords

Navigation