Advertisement

Journal of Nanoparticle Research

, Volume 13, Issue 10, pp 4659–4672 | Cite as

Silica nanoparticles containing a rhodamine dye and multiple gold nanorods

  • Charles W. Blackledge
  • Thibault Tabarin
  • Emilie Masson
  • Robert J. Forster
  • Tia E. Keyes
Research Paper

Abstract

Silica shells are grown around colloidally synthesized gold nanorods (AuNRs) to form core–shell particles (AuNR@SiO2) of variable occupancy, defined as the number of AuNRs per silica particle. Multiple AuNR occupancy within the silica shell, confirmed with high-resolution electron microscopy, is reflected in a redshift of the longitudinal plasmon mode of the nanorods due to multipolar coupling between AuNRs of a favored end–end orientation. In addition to the plasmon resonance that dominates their absorbance spectra, FL-AuNR@SiO2, core–shell particles incorporating a lipid probe (rhodamine-DOPE), can be monitored by their fluorescence and Raman signals. Optical and scanning electron microscopy (SEM) images are compared directly, enabling the correlation of spectroscopic characteristics with particle morphology. Raman and SEM images show that the most intense Raman signals come from aggregates of AuNRs trapped within the silica matrix. Biexponential fits to fluorescence decays indicate that competing mechanisms of quenching and fluorescence enhancement contribute to a reduced fluorescence lifetime of rhodamine-DOPE located near the AuNRs.

Keywords

Gold nanorod Plasmon Silica Fluorescence Raman Rhodamine Lipid dye Core–shell 

Notes

Acknowledgments

Brendan Twamley is gratefully acknowledged for acquiring SEM images. This work was supported by the National Biophotonics and Imaging Platform initiative funded under the HEA Programme for Research in Third-Level Institutions—Cycle 4. SEM was supported by the Science Foundation Ireland under Grant number 03/IN.3/1361/EC07.

Supplementary material

11051_2011_429_MOESM1_ESM.pdf (555 kb)
Supplementary material 1 (PDF 555 kb)

References

  1. Agarwal A, Huang SW, O’Donnell M, Day KC, Kotov N, Ashkenazi S (2007) Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. Appl Phys Lett 102:064701/1–064701/4Google Scholar
  2. Alper J, Crespo M, Hamad-Schifferli J (2009) Release mechanism of octadecyl rhodamine B chloride from Au nanorods by ultrafast laser pulses. J Phys Chem C 113:5967–5973CrossRefGoogle Scholar
  3. Anger P, Bharadwaj P, Novotny L (2006) Enhancement and quenching of single-molecule fluorescence. Phys Rev Lett 96:11302–11304CrossRefGoogle Scholar
  4. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114:10834–10843CrossRefGoogle Scholar
  5. Chen C-C, Lin Y-P, Wang C-W, Tzeng H-C, Wu C-H, Chen Y-C, Chen C-P, Chen L-C, Wu Y-C (2006) DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation. J Am Chem Soc 128:3709–3715CrossRefGoogle Scholar
  6. Chen H, Kou X, Yang Z, Ni W, Wang J (2008) Shape- and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 24:5233–5237CrossRefGoogle Scholar
  7. Chen Y-S, Frey W, Kim S, Homan K, Kruizinga P, Sokolov K, Emelianov S (2010) Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy. Opt Express 18:8867–8878CrossRefGoogle Scholar
  8. Cheng D, Xu Q-H (2007) Separation distance dependent fluorescence enhancement of fluorescein isothiocyanate by silver nanoparticles. Chem Commun 248–250Google Scholar
  9. Cong H, Toftegaard R, Arnbjerg J, Ogilby PR (2010) Silica-coated gold nanorods with a gold overcoat: controlling optical properties by controlling the dimensions of a gold–silica–gold layered nanoparticle. Langmuir 26:4188–4195CrossRefGoogle Scholar
  10. del Monte F, Levy D (1998) Formation of fluorescent rhodamine B J-dimers in sol–gel glasses induced by the adsorption geometry on the silica surface. J Phys Chem B 102:8036–8041CrossRefGoogle Scholar
  11. Doherty MD, Murphy A, McPhillips J, Pollard RJ, Dawson P (2010) Wavelength dependence of Raman enhancement from gold nanorod arrays: quantitative experiment and modeling of a hot spot dominated system. J Phys Chem C 114:19913–19919CrossRefGoogle Scholar
  12. Eustis S, El-Sayed MA (2005) Aspect ratio dependence of the enhanced fluorescence intensity of gold nanorods: experimental and simulation study. J Phys Chem B 109:16350–16356CrossRefGoogle Scholar
  13. Fang Y, Seong N–H, Dlott DD (2008) Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science 321:388–391CrossRefGoogle Scholar
  14. Fu Y, Zhang J, Lakowicz JR (2010) Plasmon-enhanced fluorescence from single fluorophores end-linked to gold nanorods. J Am Chem Soc 132:5540–5541CrossRefGoogle Scholar
  15. Funston AM, Novo C, Davis TJ, Mulvaney P (2009) Plasmon coupling of gold nanorods at short distances and in different geometries. Nano Lett 9:1651–1658CrossRefGoogle Scholar
  16. Gorelikov I, Matsuura N (2008) Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles. Nano Lett 8:369–373CrossRefGoogle Scholar
  17. Guo C, Wang J, Dai Z (2011) Selective content release from light-responsive microcapsules by tuning the surface plasmon resonance of gold nanorods. Microchim Acta. doi: 10.1007/s00604-011-0570-y
  18. He W, Henne WA, Wei Q, Zhao Y, Doorneweerd DD, Cheng J-X, Low PS, Wei A (2008) Two-photon luminescence imaging of Bacillus spores using peptide-functionalized gold nanorods. Nano Res 1:450–456. doi: 10.1007/s12274-008-8047- CrossRefGoogle Scholar
  19. Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120CrossRefGoogle Scholar
  20. Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2007) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23:217–228. doi: 10.1007/s10103-007-0470-x CrossRefGoogle Scholar
  21. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248CrossRefGoogle Scholar
  22. Kuo W-S, Chang C-N, Chang Y-T, Yeh C-S (2009) Antimicrobial gold nanorods with dual-modality photodynamic inactivation and hyperthermia. Chem Commun 4853–4855Google Scholar
  23. Link S, Mohamed MB, El-Sayed MA (1999) Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J Phys Chem B 103:3073–3077CrossRefGoogle Scholar
  24. Liz-Marzán LM, Giersig M, Mulvaney P (1996) Synthesis of nanosized gold–silica core–shell particles. Langmuir 12:4329–4335CrossRefGoogle Scholar
  25. Mayer KM, Lee S, Liao H, Rostro BC, Fuentes A, Scully PT, Nehl CL, Hafner J (2008) A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods. ACS Nano 2:687–692CrossRefGoogle Scholar
  26. Ming T, Zhao L, Yang Z, Chen H, Sun L, Wang J, Yan C (2009) Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods. Nano Lett 9:3896–3903CrossRefGoogle Scholar
  27. Obare SO, Jana NR, Murphy CJ (2001) Preparation of polystyrene- and silica-coated gold nanorods and their use as templates for the synthesis of hollow nanotubes. Nano Lett 1:2001601–2001603CrossRefGoogle Scholar
  28. Oldenburg AL, Hansen MN, Zweifel DA, Wei A, Boppart SA (2006) Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography. Opt Express 14:6724–6738CrossRefGoogle Scholar
  29. Orendorff CJ, Murphy CJ (2006) Quantitation of metal content in the silver assisted growth of gold nanorods. J Phys Chem B 110:3990–3994CrossRefGoogle Scholar
  30. Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán LM (2006) Silica-coating and hydrophobation of CTAB-stabilized gold nanorods. Chem Mater 18:2465–2467CrossRefGoogle Scholar
  31. Sau TK, Murphy CJ (2004) Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 20:6414–6420CrossRefGoogle Scholar
  32. Thomas KG, Barazzouk S, Ipe BI, Joseph STS, Kamat PV (2004) Uniaxial plasmon coupling through longitudinal self-assembly of gold nanorods. J Phys Chem B 108:13066–13068CrossRefGoogle Scholar
  33. Tong LQ, Wei A, Wei A, Cheng J-X (2009) Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation, and photothermal effects. Photochem Photobiol 85:21–32CrossRefGoogle Scholar
  34. Vallet-Regi M, Rámila A, del Real RP, Pérez-Pariente J (2001) A new property of MCM-41: drug delivery system. Chem Mater 13:308–311CrossRefGoogle Scholar
  35. Vial S, Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán LM (2007) Plasmon coupling in layer-by-layer assembled gold nanorod films. Langmuir 23:4606–4611CrossRefGoogle Scholar
  36. Wang H, Huff TB, Zweifel DA, He W, Low PS, Wei A, Cheng J-X (2005) In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proc Natl Acad Sci USA 102:15752–15756CrossRefGoogle Scholar
  37. Wang C-H, Chang C-W, Peng C-A (2010) Gold nanorod stabilized by thiolated chitosan as photothermal absorber for cancer cell treatment. J Nanopart Res. doi: 10.1007/s11051-010-0162-5
  38. Wu C, Xu Q-H (2009) Stable and functionable mesoporous silica-coated gold nanorods as sensitive localized surface plasmon resonance (LSPR) nanosensors. Langmuir 25:9441–9446CrossRefGoogle Scholar
  39. Zhan Q, Qian J, Li X, He S (2010) A study of mesoporous silica-encapsulated gold nanorods as enhanced light scattering probes for cancer cell imaging. Nanotechnology 21:055704CrossRefGoogle Scholar
  40. Zhang S, Kou X, Yang Z, Shi Q, Stucky GD, Sun L, Wang J, Yan C (2007) Nanonecklaces assembled from gold rods, spheres, and bipyramids. Chem Commun 1816–1818Google Scholar
  41. Zhao T, Wu H, Yao SQ, Xu Q-H, Xu GQ (2010) Nanocomposites containing gold nanorods and porphyrin-doped mesoporous silica with dual capability of two-photon imaging and photosensitization. Langmuir 26:14937–14942CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Charles W. Blackledge
    • 1
  • Thibault Tabarin
    • 1
  • Emilie Masson
    • 1
    • 2
  • Robert J. Forster
    • 1
  • Tia E. Keyes
    • 1
  1. 1.National Biophotonics and Imaging Platform—IrelandDublin City UniversityDublin 9Ireland
  2. 2.Polytech MontpellierPlace Eugene BataillonMontpellier Cedex 5France

Personalised recommendations