Journal of Nanoparticle Research

, Volume 13, Issue 11, pp 5879–5885 | Cite as

Synthesis of uniform quasi-octahedral CeO2 mesocrystals via a surfactant-free route

  • Xiaodi Wang
  • Ying Ma
  • Abhilash Sugunan
  • Jian Qin
  • Muhammet S. Toprak
  • Bin Zhu
  • Mamoun Muhammed
Special Issue: Nanostructured Materials 2010


A facile surfactant-free nonaqueous method is presented to prepare uniform quasi-octahedral ceria, CeO2, mesocrystals, in which only Ce(NO3)3 and octanol were used as the reactants at a reaction temperature of 150 °C. CeO2 sample synthesized using this technique consists of well-dispersed quasi-octahedrons and exhibits an uniform size and morphology. Based on structural characterization, it is proposed that the CeO2 mesostructure was formed by self-assembly of primary nanocrystals based on unique 3D oriented-attachment mechanism. Optical characterization exhibited a strong quantum confinement, revealing small size of primary nanocrystals. The thermal stability and UV–Vis study reveal CeO2 mesocrystal has various potential for high temperature applications and optical apparatus applications.


Cerium oxide Mesocrystal Synthesis Self-assembly Thermal stability 



This study was supported by the Swedish Research Council and the Swedish Agency for International Development Cooperation (SIDA). M. S. Toprak acknowledges the fellowship from Knut and Alice Wallenbergs Foundation (No: UAW2004.0224).


  1. Coelfen H, Antonietti M (2005) Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew Chem Int Ed 44(35):5576–5591CrossRefGoogle Scholar
  2. Karakoti AS, Kuchibhatla SVNT, Baer DR, Thevuthasan S, Sayle DC, Seal S (2008) Self assembly of cerium oxide nanostructures in ice molds. Small 4(8):1210–1216CrossRefGoogle Scholar
  3. Kuchibhatla SVNT, Karakoti AS, Bera D, Seal S (2007a) One dimensional nanostructured materials. Prog Mater Sci 52(5):699–913CrossRefGoogle Scholar
  4. Kuchibhatla SVNT, Karakoti AS, Seal S (2007b) Hierarchical assembly of inorganic nanostructure building blocks to octahedral superstructures—a true template-free self-assembly. Nanotechnology 18:75303CrossRefGoogle Scholar
  5. Kuchibhatla SVNT, Karakoti AS, Sayle DC, Heinrich H, Seal S (2009a) Symmetry-driven spontaneous self-assembly of nanoscale ceria building blocks to fractal superoctahedra. Cryst Growth Des 9(3):1614–1620CrossRefGoogle Scholar
  6. Kuchibhatla SVNT, Nachimuthu P, Gao F, Jiang W, Shutthanandan V, Engelhard MH, Seal S, Thevuthasan S (2009b) Growth-rate induced epitaxial orientation of CeO2 on Al2O3 (0001). Appl Phys Lett 94(20):204101–204103CrossRefGoogle Scholar
  7. Lu X, Li X, Chen F, Ni C, Chen Z (2009) Hydrothermal synthesis of prism-like mesocrystal CeO2. J Alloy Compd 476(1–2):958–962CrossRefGoogle Scholar
  8. Ma Y, Wang X, Li S, Toprak MS, Zhu B, Muhammed M (2010) Samarium-doped ceria nanowires: novel synthesis and application in low-temperature solid oxide fuel cells. Adv Mater 22(14):1640–1644CrossRefGoogle Scholar
  9. Manoharan VN, Pine DJ (2004) Building materials by packing spheres. MRS Bull 29:91–95CrossRefGoogle Scholar
  10. Niederberger M, Coelfen H (2006) Oriented attachment and mesocrystals: non-classical crystallization mechanisms based on nanoparticle assembly. Phys Chem Chem Phys 8(28):3271–3287CrossRefGoogle Scholar
  11. Niederberger M, Garnweitner G, Buha J, Polleux J, Ba JH, Pinna N (2006) Nonaqueous synthesis of metal oxide nanoparticles: review and indium oxide as case study for the dependence of particle morphology on precursors and solvents. J Sol Gel Sci Technol 40(2–3):259–266CrossRefGoogle Scholar
  12. Niederberger M, Garnweitner G, Ba JH, Polleux J, Pinna N (2007) Nonaqueous synthesis, assembly and formation mechanisms of metal oxide nanocrystals. Int J Nanotechnol 4(3):263–281CrossRefGoogle Scholar
  13. Orel ZC, Orel B (1994) Optical properties of pure CeO2 and mixed CeO2/SnO2 thin film coatings. Phys Status Solidi B 186(1):K33–K36CrossRefGoogle Scholar
  14. Park J, An KJ, Hwang YS, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3(12):891–895CrossRefGoogle Scholar
  15. Pileni MP (2008) Supracrystals of inorganic nanocrystals: an open challenge for new physical properties. Acc Chem Res 41(12):1799–1809CrossRefGoogle Scholar
  16. Pinna N, Niederberger M (2008) Surfactant free nonaqueous synthesis of metal oxide nanostructures. Angew Chem Int Ed 47(29):5292–5304CrossRefGoogle Scholar
  17. Pinna N, Karmaoui M, Willinger M (2011) The “benzyl alcohol route”: an elegant approach towards doped and multimetal oxide nanocrystals. J Sol Gel Sci Technol 57(3):323–329CrossRefGoogle Scholar
  18. Sayle TXT, Parker SC, Sayle DC (2004) Shape of CeO2 nanoparticles using simulated amorphisation and recrystallisation. Chem Commun (21):2438–2439Google Scholar
  19. Sayle DC, Seal S, Wang Z, Mangili BC, Price DW, Karakoti AS, Kuchibhatla SVTN, Hao Q, Mo Bus G, Xu X (2008) Mapping nanostructure: a systematic enumeration of nanomaterials by assembling nanobuilding blocks at crystallographic positions. ACS Nano 2(6):1237–1251CrossRefGoogle Scholar
  20. Si R, Zhang YW, Zhou HP, Sun LD, Yan CH (2007) Controlled-synthesis, self-assembly behavior, and surface-dependent optical properties of high-quality rare-earth oxide nanocrystals. Chem Mater 19(1):18–27CrossRefGoogle Scholar
  21. Tsunekawa S, Fukuda T, Kasuya A (2000) Blue shift in ultraviolet absorption spectra of monodisperse CeO2 nanoparticles. J Appl Phys 87(3):1318–1321CrossRefGoogle Scholar
  22. Velev OD (2006) Materials science: enhanced: self-assembly of unusual nanoparticle crystals. Science 312(5772):376–377CrossRefGoogle Scholar
  23. Wang ZL, Feng X (2003) Polyhedral shapes of CeO2 nanoparticles. J Phys Chem B 107(49):13563–13566CrossRefGoogle Scholar
  24. Wang Z, Quan Z, Lin J (2007) Remarkable changes in the optical properties of CeO2 nanocrystals induced by lanthanide ions doping. Inorg Chem 46(13):5237–5242CrossRefGoogle Scholar
  25. Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295(5564):2418–2421CrossRefGoogle Scholar
  26. Yao HC, Yao YFY (1984) Ceria in automotive exhaust catalysts: I. Oxygen storage. J Catal 86(2):254–265CrossRefGoogle Scholar
  27. Zhang Y, Andersson S, Muhammed M (1995) Nanophase catalytic oxides: I. Synthesis of doped cerium oxides as oxygen storage promoters. Appl Catal B 6(4):325–337CrossRefGoogle Scholar
  28. Zhou H, Zhang Y, Mai H, Sun X, Liu Q, Song W, Yan C (2008) Spontaneous organization of uniform CeO2 nanoflowers by 3D oriented attachment in hot surfactant solutions monitored with an in situ electrical conductance technique. Chem Eur J 14(11):3380–3390CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Xiaodi Wang
    • 1
  • Ying Ma
    • 1
  • Abhilash Sugunan
    • 1
  • Jian Qin
    • 1
  • Muhammet S. Toprak
    • 1
  • Bin Zhu
    • 2
  • Mamoun Muhammed
    • 1
  1. 1.Functional Materials DivisionRoyal Institute of Technology (KTH)StockholmSweden
  2. 2.Department of Energy TechnologyRoyal Institute of Technology (KTH)StockholmSweden

Personalised recommendations