Journal of Nanoparticle Research

, Volume 13, Issue 11, pp 5959–5965 | Cite as

Solventless synthesis of iridium(0) nanoparticles

  • R. Redón
  • F. Ramírez-Crescencio
  • A. L. Fernández-Osorio
Special Issue: Nanostructured Materials 2010


In this article, we present the results of a solvent-free synthesis of iridium(0) nanoparticles, both water washed and unwashed. IrCl3 and NaBH4, as starting materials, are mixed using an agate mortar and milled for 15 min until a black powder is obtained, which is heated in a nitrogen-controlled atmosphere oven at 200 °C for 2 h. If the product of the reaction is not washed before heating, NaBH4 and IrO2 impurities are observed. On the other hand, if the reaction product is washed before the heating, the obtained powder is free of impurities. We study the effect of the variation in reducing agent concentration and the annealing temperature used after the reaction. In all cases, the calculated particle size is less than 10 nm.


Ir(0) nanoparticles Mechanosynthesis Solventless synthesis Aerobic synthesis 



Prof. Rocío Redón acknowledges the PAPIIT (IN101308) and CONACyT 104099 projects for the financial support.


  1. Aiken JD, Finke RG (1999) Polyoxoanion- and tetrabutylammonium-stabilized Rh(0)n nanoclusters: unprecedented nanocluster catalytic lifetime in solution. J Am Chem Soc 121(38):8803–8810. doi: 10.1021/ja991034d CrossRefGoogle Scholar
  2. Astruc D, Lu F, Ruiz J (2005) Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew Chem 44(48):7852–7872. doi: 10.1002/anie.200500766 CrossRefGoogle Scholar
  3. Birss VI, Andreas H, Serebrennikova I, Elzanowska H (1999) Electrochemical characterization of sol–gel formed Ir metal nanoparticles. Electrochem Solid State Lett 2(7):326–329. doi: 10.1149/1.1390825 CrossRefGoogle Scholar
  4. Chung YM, Rhee HK (2004) Synthesis and catalytic applications of dendrimer-templated bimetallic nanoparticles. Cat Surv Asia 8(3):211–223. doi: 10.1023/B:CATS.0000038539.86680.3d CrossRefGoogle Scholar
  5. Delogu F, Orrù R, Cao G (2003) A novel macrokinetic approach for mechanochemical reactions. Chem Eng Sci 58(3–6):815–821. doi: 10.1016/S0009-2509(02)00612-7 Google Scholar
  6. Ennas G, Marongiu G, Marras S, Piccaluga G (2004) Mechanochemical route for the synthesis of cobalt ferrite–silica and iron–cobalt alloy–silica nanocomposites. J Nanopart Res 6(1):99–105. doi: 10.1023/B:NANO.0000023203.38573.da CrossRefGoogle Scholar
  7. Fonseca SG, Umpierre AP, Fichtner PFP, Teixeira SR, Dupont J (2003) The use of imidazolium ionic liquids for the formation and stabilization of Ir0 and Rh0 nanoparticles: efficient catalysts for the hydrogenation of arenes. Chem A Eur J 9(14):3263–3269. doi: 10.1002/chem.200304753 CrossRefGoogle Scholar
  8. Ivanov E, Suryanarayana C (2000) Materials and process design through mechanochemical routes. J Mater Synth Process 8(3–4):235–244. doi: 10.1023/A:1011372312172 CrossRefGoogle Scholar
  9. Krämer J, Redel E, Thomann R, Janiak C (2008) Use of ionic liquids for the synthesis of iron, ruthenium, and osmium nanoparticles from their metal carbonyl precursors. Organometallics 27(9):1976–1978. doi: 10.1021/om800056z CrossRefGoogle Scholar
  10. Liao PC, Chen CS, Ho WS, Huang YS, Tiong KK (1997) Characterization of IrO2 thin films by Raman spectroscopy. Thin Solid Films 301(1–2):7–11. doi: 10.1016/S0040-6090(96)09545-4 CrossRefGoogle Scholar
  11. López-De Jesús YM, Vicente A, Lafaye G, Marécot P, ChT Williams (2008) Synthesis and characterization of dendrimer-derived supported iridium catalysts. J Phys Chem C 112(36):13837–13845. doi: 10.1021/jp800152f CrossRefGoogle Scholar
  12. Mévellec V, Roucoux A, Ramirez E, Philippot K, Chaudret B (2004) Surfactant-stabilized aqueous iridium(0) colloidal suspension: an efficient reusable catalyst for hydrogenation of arenes in biphasic media. Adv Synth Catal 346(1):72–76. doi: 10.1002/adsc.200303157 CrossRefGoogle Scholar
  13. Miyao T, Minoshima K, Sh Naito (2005) Remarkable hydrogen occlusion ability of hollow Ir–SiO2 nanoparticles prepared by reversed micelle techniques. J Mater Chem 15:2268–2270. doi: 10.1039/B504267D CrossRefGoogle Scholar
  14. Ott LS, Finke RG (2007) Transition-metal nanocluster stabilization for catalysis: a critical review of ranking methods and putative stabilizers. Coord Chem Rev 251(9–10):1075–1100. doi: 10.1016/j.ccr.2006.08.016 CrossRefGoogle Scholar
  15. Pan C, Pelzer K, Philippot K, Chaudret B, Dassenoy F, Lecante P, Casanove MJ (2001) Ligand-stabilized ruthenium nanoparticles: synthesis, organization, and dynamics. J Am Chem Soc 123(31):7584–7593. doi: 10.1021/ja003961m CrossRefGoogle Scholar
  16. Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56(10):978–982. doi: 10.1103/PhysRev.56.978 CrossRefGoogle Scholar
  17. Redel E, Krämer J, Thomann R, Janiak Ch (2009) Synthesis of Co, Rh and Ir nanoparticles from metal carbonyls in ionic liquids and their use as biphasic liquid–liquid hydrogenation nanocatalysts for cyclohexene. J Organomet Chem 694(7–8):1069–1075. doi: 10.1016/j.jorganchem.2008.09.050 CrossRefGoogle Scholar
  18. Redel E, Walter M, Thomann R, Hussein L, Krüger M, Janiak C (2010) Stop-and-go, stepwise and ligand free nucleation, nanocrystal growth and formation of Au-NPs in ionic liquids (ILs). Chem Commun 46(7):1159–1161. doi: 10.1039/b921744d CrossRefGoogle Scholar
  19. Šepelák V, Feldhoff A, Heitjans P, Krumeich F, Menzel D, Litterst FJ, Bergmann I, Becker KD (2006) Nonequilibrium cation distribution, canted spin arrangement, and enhanced magnetization in nanosized MgFe2O4 prepared by a one-step mechanochemical route. Chem Mater 18(13):3057–3067. doi: 10.1021/cm0514894 CrossRefGoogle Scholar
  20. Vollmer C, Redel E, Abu-Shandi K, Thomann R, Manyar H, Hardacre C, Janiak C (2010) Microwave irradiation for the facile synthesis of transition-metal nanoparticles (NPs) in ionic liquids (ILs) from metal-carbonyl precursors and Ru-, Rh-, and Ir-NP/IL dispersions as biphasic liquid–liquid hydrogenation nanocatalysts for cyclohexene. Chem A Eur J 16(12):3849–3858. doi: 10.1002/chem.200903214 CrossRefGoogle Scholar
  21. Warren BE (1940) X-ray diffraction study of the structure of glass. Chem Rev 26(2):237–255. doi: 10.1021/cr60084a007 CrossRefGoogle Scholar
  22. Yang H, Zhang X, Tang A (2006) Mechanosynthesis and gas-sensing properties of In2O3/SnO2 nanocomposites. Nanotechnology 17:2860–2864. doi: 10.1088/0957-4484/17/12/006 CrossRefGoogle Scholar
  23. Yee H, Scott RWJ, Crooks RM (2004) Synthesis, characterization, and surface immobilization of platinum and palladium nanoparticles encapsulated within amine-terminated poly(amidoamine) dendrimers. Langmuir 20(7):2915–2920. doi: 10.1021/la0361060 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • R. Redón
    • 1
  • F. Ramírez-Crescencio
    • 1
  • A. L. Fernández-Osorio
    • 2
  1. 1.CCADET, Universidad Nacional Autónoma de MéxicoMéxico D. F.México
  2. 2.FES, Cuautitlán, Universidad Nacional Autónoma de MéxicoEdo. de MéxicoMéxico

Personalised recommendations