Journal of Nanoparticle Research

, Volume 13, Issue 12, pp 6389–6396 | Cite as

Functionalization of thermally reduced graphene by in situ atom transfer radical polymerization

Research Paper


In this report, functionalization of functionalized graphene sheets (FGS) was carried out by atom transfer radical polymerization (ATRP). Poly(methyl methacrylate) (PMMA) or polystyrene (PS) was successfully grafted from FGS. Thermogravimetric analysis (TGA) was used to estimate the content of linked organic compound. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) were used to observe the morphologies of the hybrid materials obtained. This approach was proved to be an effective way for functionalizing the graphene and tailoring the polymer structures.


Atom transfer radical polymerization Graphene Functionalization Thermal processing Nanocomposites 



We gratefully acknowledge financial support from the National Natural Science Foundation of China (20774019; 50873027), “Shu Guang” project (09SG02) supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation.


  1. Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312:1191–1196. doi: 10.1126/science.1125925 CrossRefGoogle Scholar
  2. Bunch JS, van der Zande AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM, Craighead HG, McEuen PL (2007) Electromechanical resonators from graphene sheets. Science 315:490–493. doi: 10.1126/science.1136836 CrossRefGoogle Scholar
  3. Cancado LG, Pimenta MA, Neves BRA, Dantas MSS, Jorio A (2004) Influence of the atomic structure on the Raman spectra of graphite edges. PRL 93:247401. doi: 10.1103/PhysRevLett.93.247401 CrossRefGoogle Scholar
  4. Choucair M, Thordarson P, Stride JA (2009) Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat Nanotechnol 4:30–33. doi: 10.1038/nnano.2008.365 CrossRefGoogle Scholar
  5. Chung DDL (1987) Exfoliation of graphite. J Mater Sci 22:4190–4198. doi: 10.1007/BF01132008 CrossRefGoogle Scholar
  6. Chung DDL (2002) Review graphite. J Mater Sci 37:1475–1489. doi: 10.1023/A:1014915307738 CrossRefGoogle Scholar
  7. Daniel RD, Park S, Bielawski CW, Ruoff RS (2010a) The chemistry of graphene oxide. Chem Soc Rev 39:228–240. doi: 10.1039/b917103g CrossRefGoogle Scholar
  8. Daniel RD, Ruoff RS, Bielawski CW (2010b) From conception to realization: a historical account of graphene and some perspectives for its future. Angew Chem Int Ed 49:9336–9344. doi: 10.1002/anie.201003024 CrossRefGoogle Scholar
  9. Fang M, Wang KG, Lu HB, Yang YL, Nutt S (2009) Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J Mater Chem 19:7098–7105. doi: 10.1039/b908220d CrossRefGoogle Scholar
  10. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191. doi: 10.1038/nmat1849 CrossRefGoogle Scholar
  11. Gomez-Navarro C, Burghard M, Kern K (2008) Elastic properties of chemically derived single graphene sheets. Nano Lett 8:2045–2049. doi: 10.1021/nl801384y CrossRefGoogle Scholar
  12. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun’Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568. doi: 10.1038/nnano.2008.215 CrossRefGoogle Scholar
  13. Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD (1999) Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater 11:771–778. doi: 10.1021/cm981085u CrossRefGoogle Scholar
  14. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388. doi: 10.1126/science.1157996 CrossRefGoogle Scholar
  15. Lee SH, Dreyer DR, An J, Velamakanni A, Piner RD, Park S, Zhu Y, Kim SO, Bielawski CW, Ruoff RS (2010) Polymer brushes via controlled, surface-initiated atom transfer radical polymerization (ATRP) from graphene oxide. Macromol Rapid Commun 31:281–288. doi: 10.1002/marc.200900641 CrossRefGoogle Scholar
  16. Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105. doi: 10.1038/nnano.2007.451 CrossRefGoogle Scholar
  17. Liu N, Luo F, Wu H, Liu Y, Zhang C, Chen J (2008) One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv Fun Mater 18:1518–1525. doi: 10.1002/adfm.200700797 CrossRefGoogle Scholar
  18. Matyjaszewski K, Xia J (2001) Atom transfer radical polymerization. Chem Rev 101:2921–2990. doi: 10.1021/cr940534g CrossRefGoogle Scholar
  19. McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud’homme RK, Aksay IA (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19:4396–4404. doi: 10.1021/cm0630800 CrossRefGoogle Scholar
  20. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. doi: 10.1126/science.1102896 CrossRefGoogle Scholar
  21. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005a) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200. doi: 10.1038/nature04233 CrossRefGoogle Scholar
  22. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005b) Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102:10451–10453. doi: 10.1073/pnas.0502848102 CrossRefGoogle Scholar
  23. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25. doi: 10.1016/j.polymer.2010.11.042 CrossRefGoogle Scholar
  24. Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, PrudHomme RK, Brinson LC (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327–331. doi: 10.1038/nnano.2008.96 CrossRefGoogle Scholar
  25. Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prudhomme RK, Car R, Saville DA, Aksay IA (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110:8535–8539. doi: 10.1021/jp060936f CrossRefGoogle Scholar
  26. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006a) Graphene-based composite materials. Nature 442:282–286. doi: 10.1038/nature04969 CrossRefGoogle Scholar
  27. Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS (2006b) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 16:155–158. doi: 10.1039/b512799h CrossRefGoogle Scholar
  28. Stankovich S, Piner RD, Nguyen ST, Ruoff RS (2006c) Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44:3342–3347. doi: 10.1016/j.carbon.2006.06.004 CrossRefGoogle Scholar
  29. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565. doi: 10.1016/j.carbon.2007.02.034 CrossRefGoogle Scholar
  30. Tung VC, Allen MJ, Yang Y, Kaner RB (2009) High-throughput solution processing of large-scale graphene. Nat Nanotechnol 4:25–29. doi: 10.1038/nnano.2008.329 CrossRefGoogle Scholar
  31. Wang G, Yang J, Park J, Gou X, Wang B, Liu H, Yao J (2008) Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 112:8192–8195. doi: 10.1021/jp710931h CrossRefGoogle Scholar
  32. Wong JS, Matyjaszewski K (1995) Controlled/“living” radical polymerization atom transfer radical polymerization in the presence of transition-metal complexes. J Am Chem Soc 117:5614–5615. doi: 10.1021/ma971009x CrossRefGoogle Scholar
  33. Xu Y, Bai H, Lu G, Li C, Shi G (2008) Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc 130:5856–5857. doi: 10.1021/ja800745y CrossRefGoogle Scholar
  34. Yang Y, Wang J, Zhang J, Liu J, Yang X, Zhao H (2009) Exfoliated graphite oxide decorated by PDMAEMA chains and polymer particles. Langmuir 25:11808–11814. doi: 10.1021/la901441p CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Lulu Ren
    • 1
  • Xiaoyan Wang
    • 1
  • Shuzhong Guo
    • 1
  • Tianxi Liu
    • 1
  1. 1.Key Laboratory of Molecular Engineering of Polymers of Ministry of Education, Department of Macromolecular ScienceFudan UniversityShanghaiPeople’s Republic of China

Personalised recommendations