Skip to main content

Advertisement

Log in

Silvernanotherapy on the viral borne disease of silkworm Bombyx mori L.

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Antiviral assays of chemically and biologically synthesized silver nanoparticles were made against BmNPV (Bombyx mori Nuclear Polyhedrosis Virus). Reduction of silver ions by sodium citrate and Spirulina platensis led to the formation of spherical silver nanoparticles of 40–60 and 7–16 nm size. Single cell protein (Spirulina platensis)-synthesized silver nanoparticles showed the strongest antiviral activity. Immunological studies made on the silkworm Bombyx mori disclosed that a significant increase in the total hemocyte count and differential hemocyte count due to S. platensis-synthesized silver nanoparticles supplementation. Improvement in the defense mechanism was noticed from the strengthened peritrophic membrane of the digestive tract and the increased total protein. Overall, the results presented illustrate that single cell protein-synthesized silver nanoparticles supplementation is effective in controlling viral-borne diseases of the silkworm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aizawa K (1963) The nature of infections caused by nuclear polyhedrosis viruses. In: Steinhaus EA (ed) Insect pathology. Academic press, New York

    Google Scholar 

  • Arakawa T, Sugiyama M (2002) Promotion of nucleopolyhedrovirus infection in larvae of the silkworm, Bombyx mori (Lepidoptera: Bombycidae) by an antibiotic, nikkomycin. Appl Entomol Zool 37:393–397

    Article  Google Scholar 

  • Arnold JW (1979) Controversies about haemocyte types in insects. In: Gupta A (ed) Insect haemocytes. Cambridge University Press, Cambridge, pp 231–258

    Chapter  Google Scholar 

  • Attathom T, Sinchaisri N (1987) Nuclear polyhedrosis virus isolated from Bombyx mori in Thailand. Sericologia 27:287–295

    Google Scholar 

  • Ayehunie S, Belay A, Hu Y, Baba T, Ruprecht R (1996) Inhibition of HIV-1 replication by an aqueous extract of Spirulina platensis (Arthrospira platensis). In: 7th IAAA conference, Knysna, South Africa, 17 April

  • Balavenkatasubbaiah M, Nataraju B, Thiagarajan V, Datta RK (2001) Haemocyte counts in different breeds of silkworm Bombyx mori L and their changes during the progressive infection of BmNPV. Indian J Seric 40:158–162

    Google Scholar 

  • Basha KS, Govindaraju K, Manikandan R, Ahn JS, Bae EY, Singaravelu G (2010) Phytochemical mediated gold nanoparticles and their PTP 1B inhibitory activity. Colloids Surf B Biointerfaces 75(2):405–409

    Google Scholar 

  • Bergold GH (1963) The nature of nuclear polyhedrosis viruses. In: Steinhaus EA (ed) Insect pathology. Academic press, New York

    Google Scholar 

  • Bhattacharya A, Medda AK (1981) Effect of cyanocobalamin and cobalt chloride on the lipid content of silkgland of Bombyx mori L. race nistari. Sci Cult 7:140–141

    Google Scholar 

  • Bonnemann H, Richards R (2001) Nanoscopic metal particles-synthetic methods and potential applications. Eur J Inorg Chem 10:2455–2480

    Article  Google Scholar 

  • Cantwell GE (1973) Methods for determining the level of Nosema infection in honeybees. In: Cantwell GE (ed) Insect diseases, vol 2. Marcel Deker, Inc., New York, pp 539–542

    Google Scholar 

  • De Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJAM, Geertsma RE (2008) Particle size dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29:1912–1919

    Article  Google Scholar 

  • Diehl-Jones WL, Mandato CA, Whent G, Roger GH, Downer G (1996) Monoaminergic regulation of haemocyte activity. J Insect Physiol 42:13–19

    Article  CAS  Google Scholar 

  • Dunn PE (1986) Biochemical aspects of insect immunology. Ann Rev Entomol 31:321–339

    Article  CAS  Google Scholar 

  • Elechiguerra JL, Burt JL, Morones RJ, Camacho A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3:1–10

    Article  Google Scholar 

  • Govindan R, Narayanaswamy TK, Devaiah MC (1998) Principles of silkworm pathology. Seri Scientific Publication, Bangalore, pp 64–65

    Google Scholar 

  • Govindaraju K, Khaleel Basha S, Ganesh Kumar V, Singaravelu G (2008) Silver, gold and bimetallic nanoparticles production using single cell protein (Spirulina platensis) Geitler. J Mater Sci 43:5115–5122

    Article  CAS  Google Scholar 

  • Govindaraju K, Kiruthiga V, Ganesh Kumar V, Singaravelu G (2009) Extracellular synthesis of silver nanoparticles by a marine alga, Sargassum wightii Grevilli and their antibacterial effects. J Nanosci Nanotechnol 9:5497–5501

    Article  CAS  Google Scholar 

  • Hopkins TL, Harper MS (2001) Lepidopteron peritrophic membranes and effects of dietary wheat germ agglutinin on their formation and structure. Arch Insect Biochem Physiol 47:100–109

    Article  CAS  Google Scholar 

  • Hughes KM (1957) An annotated list and bibliography of insects reported to have virus diseases. Hilgardia 26:597–629

    Google Scholar 

  • Jain PK, El-Sayed IH, El-Sayed MA (2007) Au nanoparticles target cancer. Nanotoday 2:18–29

    Google Scholar 

  • Jones JC (1979) Pathways and pitfalls in the classification and study of insect haemocytes. In: Gupta AP (ed) Insects haemocyte development forms, functions and techniques. Cambridge University Press, Cambridge, pp 279–300

    Chapter  Google Scholar 

  • Kamat PV, Flumiani M, Hartland GV (1998) Picosecond dynamics of silver nano clusters light induced fragmentation and photojection of electrons. J Phys Chem B 102:3123–3128

    Article  CAS  Google Scholar 

  • Kawarabata T, Matsumoto K (1973) Isolation and structure of a nuclear polyhedrosis virus from polyhedra of the silkworm, B. mori. Appl Ent Zool 8:227–233

    Google Scholar 

  • Krishnaswami S (1978) New technology of silk rearing. Bulletin no. 2. C.S.R. & T.I, Mysore, India

    Google Scholar 

  • Kumar V, Yadav SK (2009) Plant mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol 84:151–157

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Lian LY (1991) Silkworm diseases. FAO Agric Serv Bull 73:1

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Fara AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Mandal S, Phadtare S, Sastry M (2005) Interfacing biology with nanoparticles. Curr Appl Phy 5:118–127

    Article  Google Scholar 

  • Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbial Biotechnol 69:485–492

    Article  CAS  Google Scholar 

  • Martignini ME, Langston RL (1960) Supplement to an annotated list and bibliography of insects. Hilgardia 30:1–40

    Google Scholar 

  • Masui H, Matsubara P (1983) Influence of cobalt and nickel in diet on larval development of the silkworm, Bombyx mori under aseptic conditions. J Seric Sci Japan 52:425–431

    CAS  Google Scholar 

  • Mirkin CA, Letsinger RL, Mucic RC, Storhof JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    Article  CAS  Google Scholar 

  • Miyuki Y, Kiko I (2001) Bombyx mori L prohaemocyte division and differentiation in individual micro cultures. J Insect Physiol 47:325–331

    Article  Google Scholar 

  • Nagaraju J (2002) Application of genetic principles for improving silk production. Curr Sci 83:409–414

    Google Scholar 

  • Nittono Y (1960) Studies on the blood cells in the silkworm, Bombyx mori L. Bull Seric Expt Stn 16:261–266

    Google Scholar 

  • Padki PR (1991) Some aspects of physiology of the eri silkworm Philosomia ricini. PhD Thesis, Karnataka University, India

  • Pantin CRA (1948) Microscopical technique for zoologists. Cambridge University Press, London

    Google Scholar 

  • Park SA, Taton TA, Mirkin CA (2002) Array-based electrical detection of DNA using nanoparticle probe. Science 295:1503–1506

    Article  CAS  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83

    Article  CAS  Google Scholar 

  • Ratnasen AshwathSK, Datta RK (2001) Inheritance of resistance to nuclear polyhedrosis virus in silkworm, Bombyx mori. Int J Indust Entomol 3:187–190

    Google Scholar 

  • Rembaum A, Dreyer WJ (1980) Immunomicrospheres: reagent for cell labeling and separation. Science 208:364–368

    Article  CAS  Google Scholar 

  • Richards AG, Richards AP (1977) The peritrophic membranes of insects. Ann Rev Entomol 22:219–240

    Article  Google Scholar 

  • Sandhu KK, McIntosh CM, Simard JM, Smith SW, Rotello VM (2002) Gold nanoparticle-mediated transfection of mammalian cells. Bioconjug Chem B 13:3–6

    Article  CAS  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram negative bacteria. J Colloid Interface Sci 275:177–182

    Article  CAS  Google Scholar 

  • Srinivasa G, Sarangi RN, Geetha GS, Geethadevi RG, Vijayaprakash NB (2001) Cropping patterns and income levels of sericulturists in Mandya District, Karnataka—a comparative study. Indian J Seric 40:119–126

    Google Scholar 

  • Vago C, Aizawa K, Ignoffo C, Martignoni ME, Tarasevitch L, Tinsley TW (1974) Present status of the nomenclature and classification of invertebrate viruses. J Invertebr Pathol 23:133–134

    Article  CAS  Google Scholar 

  • Wang P, Granados RR (2001) Molecular structure of the peritrophic membrane (PM) identification of potential PM target sites for insect control. Arch Insect Biochem Physiol 47:110–118

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors profusely thank the Department of Science and Technology (DST Nanomission), New Delhi, Government of India for the financial assistance, and HR-TEM assistance of SAIF, IIT, Chennai. The authors also thank Prof. A.Jothi Murugan, Vice-chancellor, and Prof. B.Krihnamurthy, Registrar, Thiruvalluvar University, Vellore for their support and encouragements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Singaravelu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Govindaraju, K., Tamilselvan, S., Kiruthiga, V. et al. Silvernanotherapy on the viral borne disease of silkworm Bombyx mori L.. J Nanopart Res 13, 6377–6388 (2011). https://doi.org/10.1007/s11051-011-0390-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0390-3

Keywords

Navigation