Advertisement

Journal of Nanoparticle Research

, Volume 13, Issue 11, pp 5677–5684 | Cite as

Iron nanoparticles prepared from natural ferrihydrite precursors: kinetics and properties

  • O. Schneeweiss
  • J. Filip
  • B. David
  • R. Zbořil
  • M. Mašláň
Special Issue: Nanostructured Materials 2010

Abstract

Natural ferrihydrite was used as the precursors for the preparation of the nanocrystalline alpha-Fe powder using heat treatment in hydrogen atmosphere. Transformation temperatures were estimated from the temperature dependences of magnetic moment. Structure and phase composition of the precursors and the final powders were characterized by X-ray diffraction and Mössbauer spectroscopy. Magnetic properties were characterized according to hysteresis loop parameters. The kinetics of the transformation was described using Avrami relation applied on the data of the isothermal time dependence of magnetic moment measurements and subsequently the activation enthalpy of transformation was estimated using Arrhenius plots of their parameters. Comparison of the changes of activation enthalpies derived from a different temperature ranges indicates effects of different processes on formation of alpha-Fe nanoparticles.

Keywords

Iron nanoparticles Ferrihydrite Reduction Hydrogen Magnetic moment Activation enthalpy 

Notes

Acknowledgments

This work has been supported by the projects of the Ministry of Education of the Czech Republic (1M619895201) and Grant Agency of the Czech Republic (106/08/1440).

References

  1. Bowen LH, De Grave E, Vandenberhe RE (1993) Mössbauer effect studies of magnetic soils and sediments. In: Long GJ, Grandjean F (eds) Mössbauer spectroscopy applied to magnetism and materials science, vol 1. Plenum Press, New York, pp 115–159Google Scholar
  2. Coetsee T, Pistorius PC, de Villiers EE (2002) Rate-determining steps for reduction in magnetite coal pellets. Miner Eng 15:919–929CrossRefGoogle Scholar
  3. Cornell RM, Schwertmann U (1996) The iron oxides. Structure, properties, reactions occurrence and use. VCH, Weinheim, p 117Google Scholar
  4. Filip J, Zboril R, Schneeweiss O, Zeman J, Cernik M, Kvapil P, Otyepka M (2007) Environmental applications of chemically pure natural ferrihydrite. Environ Sci Technol 41:4367–4374CrossRefGoogle Scholar
  5. Fortini AJ, Perlmutter DD (1989) Porosity effects in hydrogen reduction of iron-oxides. AIChE J 35:1245–1252CrossRefGoogle Scholar
  6. Liberti G, Servi G, Gauglio A, Ruffino C, Pernicone N (1974) Thermogravimetric study of magnetite reduction at low-temperature. J Therm Anal 6:183–192CrossRefGoogle Scholar
  7. Lin H-Y, Chen Y-W, Li C (2003) The mechanism of reduction of iron oxide by hydrogen. Thermochim Acta 400:61–67CrossRefGoogle Scholar
  8. Munteanu G, Ilieva L, Andreeva D (1999) TPR data regarding the effect of sulfur on the reducibility of alpha-Fe2O3. Thermochim Acta 329:157–162CrossRefGoogle Scholar
  9. Pineau A, Kanari N, Gaballah I (2006) Kinetics of reduction of iron oxides by H2 Part I: low temperature reduction of hematite. Thermochim Acta 447:89–100CrossRefGoogle Scholar
  10. Price CW (1990) Use of Kolmogorov–Johnson–Mehl–Avrami kinetics in recrystallization of metals and crystallization of metallic glasses. Acta Metall Mater 38:727–738CrossRefGoogle Scholar
  11. Schneeweiss O, Grygar T, David B, Zboril R, Filip J, Mashlan M (2008) Mössbauer and magnetic studies of nanocrystalline iron, iron oxide and iron carbide powders prepared from synthetic ferrihydrite. In: Mashlan M, Zboril R (eds) Mossbauer spectroscopy in materials science 2008, AIP conference proceedings, vol 1070, pp 106–113Google Scholar
  12. Schneeweiss O, Hapla M, Zboril R, Maslan M (2010a) Properties of iron nanoparticles sealed in protective media. In: Müller H, Reissner M, Steiner W, Wiesinger G (eds) Proceedings of the ICAME 2009, IOP Publishing, J Phys Conference Series 217. doi: 10.1088/1742-6596/217/1/012104
  13. Schneeweiss O, David B, Žák T, Filip J, Tuček J, Zbořil R, Mašláň M (2010b) Magnetic interactions between nanoparticles formed during calcination of ferrihydrite. Acta Phys Polon A 118:749–750Google Scholar
  14. Trujic VK, Zivkovic ZD, Zivkovic DT (1996) Influence of hydrated lime on the reduction of green magnetite pellets with hydrogen. Mater Trans JIM 37:1580–1587Google Scholar
  15. Vulicevic L, Ivanovic N, Popovic N, Kusigerski V, Sreckovic M, Tomic Z, Vardic S (2007) Reduction of nanometric magnetite powder. Mater Sci Forum 555:273–278CrossRefGoogle Scholar
  16. Wagner D, Devisme O, Patisson F, Ablitzer D (2006) A laboratory study of reduction of iron oxides by hydrogen. In: Kongoli F, Reddy RG (eds) Proceedings of the Sohn international symposium, 27–31 August 2006, vol 2. TMS, San Diego, pp 111–120Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • O. Schneeweiss
    • 1
  • J. Filip
    • 2
  • B. David
    • 1
  • R. Zbořil
    • 2
  • M. Mašláň
    • 2
  1. 1.Institute of Physics of Materials, AS CRBrnoCzech Republic
  2. 2.Centre for Nanomaterial ResearchPalacky UniversityOlomoucCzech Republic

Personalised recommendations