Journal of Nanoparticle Research

, Volume 13, Issue 11, pp 5815–5824 | Cite as

Investigations of solvents and various sulfur sources influence on the shape-controlled synthesis of CuInS2 nanocrystals

  • Marta Kruszynska
  • Holger Borchert
  • Jürgen Parisi
  • Joanna Kolny-Olesiak
Special Issue: Nanostructured Materials 2010


CuInS2 (CIS) nanocrystals were successfully synthesized through a hot-injection technique employing a reaction of copper (I) acetate and indium (III) acetate with tert-dodecanethiol as a source of sulfur, and trioctylphosphine oxide and 1-dodecanethiol were used as ligands. The reaction medium was a mixture of two solvents: oleylamine and 1-octadecene. Varying the ratio between both solvents leads to the formation of wurtzite CuInS2 particles with shapes ranging from triangular to rod-shaped with length up to 50 nm. Oleylamine turned out to influence the reaction condition in two opposite ways: by leading to monomer depletion before the injection of the sulfur precursor, and at the same time increasing the activity of the monomers remaining in solution. By changing the sulfur source from tert-dodecanethiol to sulfur dissolved in oleylamine, triangular particles with zinc blend structure and a smaller size (~5 nm) were synthesized. The final materials were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), and absorption spectroscopy (UV–Vis).


Nanocrystals Copper indium disulfide Morphology Shape-control Semiconductors 



We gratefully acknowledge funding by the Federal Ministry of Education and Research (BMBF, project number 03SF0338C) and the funding of the EWE Research Group “Thin Film Photovoltaics” by the EWE AG, Oldenburg.

Supplementary material

11051_2011_381_MOESM1_ESM.pdf (413 kb)
Supplementary material 1 (PDF 413 kb)


  1. Alivisatos AP (1996) Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem 100:13226–13239CrossRefGoogle Scholar
  2. Batabyal SK, Tian L, Venkatram N, Ji W, Vittal JJ (2009) Phase-selective synthesis of CuInS2 nanocrystals. J Phys Chem C 113:15037–15042CrossRefGoogle Scholar
  3. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102CrossRefGoogle Scholar
  4. Connor ST, Hsu C, Weil BD, Aloni S, Cui Y (2009) Phase transformation of biphasic Cu2S-CuInS2 to monophasic CuInS2 nanorods. J Am Chem Soc 131:4962–4966CrossRefGoogle Scholar
  5. Courtel FM, Paynter RW, Marsan B, Morin M (2009) Synthesis, characterization, and growth mechanism of n-type CuInS2 colloidal particles. Chem Mater 21:3752–3762CrossRefGoogle Scholar
  6. Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946CrossRefGoogle Scholar
  7. Dahl JA, Maddux BLS, Hutchison JE (2007) Toward greener nanosynthesis. Chem Rev 107:2228–2269CrossRefGoogle Scholar
  8. de Mello Donega C, Liljeroth P, Vanmaekelbergh D (2005) Physicochemical evaluation of the hot-injection method, a synthesis route for monodisperse nanocrystals. Small 1:1152–1162CrossRefGoogle Scholar
  9. Du W, Qian X, Yin J, Gong Q (2007) Shape- and phase-controlled synthesis of monodisperse, single-crystalline ternary chalcogenide colloids through a convenient solution synthesis strategy. Chem Eur J 13:8840–8846CrossRefGoogle Scholar
  10. Dutta DP, Sharma G, Tyagi AK (2007) A facile synthesis of CuInS2 nanoparticles from molecular single source precursors. J Nanosci Nanotechnol 7:4353–4358CrossRefGoogle Scholar
  11. Jana NR, Chen Y, Peng X (2004) Size-and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem Mater 16:3931–3935CrossRefGoogle Scholar
  12. Joo J, Na HB, Yu T, Yu JH, Kim YW, Wu F, Zhang JZ, Hyeon T (2003) Generalized and facile synthesis of semiconducting metal sulfide nanocrystals. ChemInform 125:11100–11105Google Scholar
  13. Kloper V, Osovsky R, Kolny-Olesiak J, Sashchiuk A, Lifshitz E (2007) The growth of colloidal cadmium telluride nanocrystal quantum dots in the presence of Cd0 nanoparticles. J Phys Chem C 111:10336–10341CrossRefGoogle Scholar
  14. Kolny-Olesiak J, Kloper V, Osovsky R, Sashchiuk A, Lifshitz E (2007) Synthesis and characterization of brightly photoluminescent CdTe nanocrystals. Surf Sci 601:2667–2670CrossRefGoogle Scholar
  15. Koo B, Patel RN, Korgel BA (2009) Wurtzite-chalcopyrite polytypism in CuInS2 nanodisks. Chem Mater 21:1962–1966CrossRefGoogle Scholar
  16. Kruszynska M, Borchert H, Parisi J, Kolny-Olesiak J (2010) Synthesis and shape control of CuInS2 nanoparticles. J Am Chem Soc 132:15976–15986CrossRefGoogle Scholar
  17. Kwon SG, Hyeon T (2008) Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides. Acc Chem Res 41:1696–1709CrossRefGoogle Scholar
  18. Li LS, Pradhan N, Wang Y, Peng X (2004) High quality ZnSe and ZnS nanocrystals formed by activating zinc carboxylate precursors. Nano Lett 4:2261–2264CrossRefGoogle Scholar
  19. Li L, Daou TJ, Texier I, Kim Chi TT, Liem NQ, Reiss P (2009) Highly luminescent CuInS2/ZnS core/shell nanocrystals: cadmium-free quantum dots for in vivo imaging. Chem Mater 21:2422–2429CrossRefGoogle Scholar
  20. Lutterotti L, Chateigner D, Ferrari S, Ricote J (2004) Texture, residual stress and structural analysis of thin films using a combined X-ray analysis. Thin Solid Films 450:34–41CrossRefGoogle Scholar
  21. Nose K, Soma Y, Omata T, Otsuka-Yao-Matsuo S (2009) Synthesis of ternary CuInS2 nanocrystals; phase determination by complex ligand species. Chem Mater 21:2607–2613CrossRefGoogle Scholar
  22. Nyari T, Barvinschi P et al (2005) Experimental and numerical results in hydrothermal synthesis of CuInS2 compound semiconductor nanocrystals. J Cryst Growth 275:e2383–e2387CrossRefGoogle Scholar
  23. Pan D, An L, Sun Z, Hou W, Yang Y, Yang Z, Lu Y (2008) Synthesis of Cu-In-S ternary nanocrystals with tunable structure and composition. J Am Chem Soc 130:5620–5621CrossRefGoogle Scholar
  24. Park J, Joo J, Kwon SG, Jang Y, Hyeon T (2007) Synthesis of monodisperse spherical nanocrystals. Angew Chem Int Ed 46:4630–4660CrossRefGoogle Scholar
  25. Peng X (2009) An essay on synthetic chemistry of colloidal nanocrystals. Nano Res 2:425–447CrossRefGoogle Scholar
  26. Popa NC (1992) Texture in Rietveld refinement. J Appl Cryst 25:611–616CrossRefGoogle Scholar
  27. Popa NC (1998) The (hkl) dependence of diffraction-line broadening caused by strain and size for all Laue groups in Rietveld refinement. J Appl Cryst 31:176–180CrossRefGoogle Scholar
  28. Qi Y, Liu Q, Tang K, Liang Z, Ren Z, Liu X (2009) Synthesis and characterization of nanostructured wurtzite CuInS2: a new cation disordered polymorph of CuInS2. J Phys Chem C 113:3939–3944CrossRefGoogle Scholar
  29. Rincon C (1992) Order-disorder transition in ternary chalcopyrite compounds and pseudobinary alloys. Phys Rev B 45:12716–12719CrossRefGoogle Scholar
  30. Shay JL, Wernick JH (1975) Ternary chalcopyrite semiconductors: growth electronic properties and applications. Pergamon, New YorkGoogle Scholar
  31. Wang D, Zheng W, Hao C, Peng Q, Li Y (2008) General synthesis of I-III-VI2 ternary semiconductor nanocrystals. Chem Comm 22:2556–2558CrossRefGoogle Scholar
  32. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mat 15:353–389CrossRefGoogle Scholar
  33. Xie R, Rutherford M, Peng X (2009) Formation of high-quality I-III-VI semiconductor nanocrystals by tuning relative reactivity of cationic precursors. J Am Chem Soc 131:5691–5697CrossRefGoogle Scholar
  34. Yu C, Yu JC, Wen H, Zhang C (2009) A mild solvothermal route for preparation of cubic-like CuInS2 crystals. Mat Lett 63:1984–1986CrossRefGoogle Scholar
  35. Zhong H, Zhou Y, Ye M, He Y, Ye J, He C, Yang C, Li Y (2008) Controlled synthesis and optical properties of colloidal ternary chalcogenide CuInS2 nanocrystals. Chem Mater 20:6434–6443CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Marta Kruszynska
    • 1
  • Holger Borchert
    • 1
  • Jürgen Parisi
    • 1
  • Joanna Kolny-Olesiak
    • 1
  1. 1.Energy and Semiconductor Research Laboratory, Department of PhysicsUniversity of OldenburgOldenburgGermany

Personalised recommendations