Journal of Nanoparticle Research

, Volume 13, Issue 11, pp 5985–5997 | Cite as

Electrochemical and hydrothermal deposition of ZnO on silicon: from continuous films to nanocrystals

  • M. Balucani
  • P. Nenzi
  • E. Chubenko
  • A. Klyshko
  • V. Bondarenko
Special Issue: Nanostructured Materials 2010


This article presents the study of the electrochemical deposition of zinc oxide from the non-aqueous solution based on dimethyl sulfoxide and zinc chloride into the porous silicon matrix. The features of the deposition process depending on the thickness of the porous silicon layer are presented. It is shown that after deposition process the porous silicon matrix is filled with zinc oxide nanocrystals with a diameter of 10–50 nm. The electrochemically deposited zinc oxide layers on top of porous silicon are shown to have a crystalline structure. It is also shown that zinc oxide crystals formed by hydrothermal method on the surface of electrochemically deposited zinc oxide film demonstrate ultra-violet luminescence. The effect of the porous silicon layer thickness on the morphology of the zinc oxide is shown. The structures obtained demonstrated two luminescence bands peaking at the 375 and 600 nm wavelengths. Possible applications of ZnO nanostructures, porous and continuous polycrystalline ZnO films such as gas sensors, light-emitting diodes, photovoltaic devices, and nanopiezo energy generators are considered. Aspects of integration with conventional silicon technology are also discussed.


Zinc oxide Porous silicon Nanocrystal X-ray diffraction Photoluminescence 



The study has been supported by Belarus Government Research Program “Nanomaterials and nanotechnologies”, grant 6.12.03 and by the Italian company Rise Technology S.r.l. Authors would like to thank V. Tzibulsky from “Belmicrosystems” (Minsk, Belarus) for help in SEM images preparation, A. Puskarev, L. Postnova and V. Levchenko from “Scientific-Practical Materials Research Centre of NAS of Belarus” SSPA for their help in XRD investigations, and V. Yakovtseva and R. Crescenzi respectively from Belarusian State University of Informatics and Radioelectronics and University of Rome “La Sapienza”, Electronic Department for the fruitful discussion, and also O. Kozlova and A. Yermalovich for their help in experiments implementation.


  1. Albertsson J, Abrahams SC, Kvick A (1989) Atomic displacement, anharmonic thermal vibration, expansivity and pyroelectric coefficient thermal dependences in ZnO. Acta Cryst B45:34–40. doi: 10.1107/S0108768188010109 Google Scholar
  2. Al-Suleiman MAM, Bakin A, Waag A (2009) Mechanisms for high internal quantum efficiency of ZnO nanordos. J Appl Phys 106:063111CrossRefGoogle Scholar
  3. Ashfold MNR, Doherty RP, Ndifor-Angwafor NG, Riley DJ, Sun Y (2007) The kinetics of the hydrothermal growth of ZnO nanostructures. Thin Solid Films 515:8679–8683. doi: 10.1016/j.tsf.2007.03.122 CrossRefGoogle Scholar
  4. Baruah S, Dutta J (2009a) Hydrothermal growth of ZnO nanostructures. Sci Technol Adv Mater 10:013001–013019. doi: 10.1088/1468-6996/10/1/013001 CrossRefGoogle Scholar
  5. Baruah S, Dutta J (2009b) pH-dependent growth of zinc oxide nanorods. J Cryst Growth 311:2549–2554. doi: 10.1016/j.jcrysgro.2009.01.135 CrossRefGoogle Scholar
  6. Basu S, Basu PK (2009) Nanocrystalline metal oxides for methane sensors: role of noble metals. J Sens 2009:861968–861988. doi: 10.1155/2009/861968 Google Scholar
  7. Bondarenko V, Vorozov N, Dikareva V, Dorofeev A, Levchenko V (1994) Heteroepitaxial growth of lead sulfide on silicon. Tech Phys Lett 20:410–411Google Scholar
  8. Canham LT (1990) Silicon quantum array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett 57:1046–1048. doi: 10.1063/1.103561 CrossRefGoogle Scholar
  9. Canham LT (1993) Progress toward crystalline-silicon-based light-emitting diodes. MRS Bull 18:22–28Google Scholar
  10. Cembrero J, Busquets-Mataix D (2009) ZnO crystals obtained by electrodeposition: statistical analysis of most important process variables. Thin Solid Films 517:2859–2864. doi: 10.1016/j.tsf.2008.10.069 CrossRefGoogle Scholar
  11. Chubenko E, Bondarenko V, Balucani M (2009a) Visible photoluminescence of zinc oxide films electrochemically deposited on silicon substrates. Tech Phys Lett 35:1160–1162CrossRefGoogle Scholar
  12. Chubenko E, Klyshko A, Petrovich V, Bondarenko V (2009b) Electrochemical deposition of zinc selenide and cadmium selenide onto porous silicon from aqueous acidic solutions. Thin Solid Films 517:5981–5987. doi: 10.1016/j.tsf.2009.03.134 CrossRefGoogle Scholar
  13. Dem’yanets LN, Lyutin VI (2008) Status of hydrothermal growth of bulk ZnO: latest issues and advantages. J Cryst Growth 310:993–999. doi: 10.1016/j.jcrysgro.2007.11.145 Google Scholar
  14. Ehrentraut D, Sato H, Kagamitani Y, Sato H, Yoshikawa A, Fukuda T (2006) Solvothermal growth of ZnO. Prog Cryst Growth Charact Mater 52:280–335. doi: 10.1016/j.pcrysgrow.2006.09.002 CrossRefGoogle Scholar
  15. Herino R (1997) Pore size distribution in porous silicon. EMIS Datarev Ser 18:89–96Google Scholar
  16. ITRS (2009) International technology roadmap for semiconductors.
  17. Levchenko V, Postnova L, Bondarenko V, Vorozov N, Yakovtseva V, Dolgyi L (1999) Heteroepitaxy of PbS on porous silicon. Thin Solid Films 348:141–144. doi: 1016/S0040-6090(99)00052-8 CrossRefGoogle Scholar
  18. Li KH, Tsai C, Shih S, Hsu T, Kwong DL, Campbell JC (1992) The photoluminescence spectra of porous silicon boiled in water. J Appl Phys 72:3816–3818. doi: 10.1063/1.352280 CrossRefGoogle Scholar
  19. Lincot D (2005) Electrodeposition of semiconductors. Thin Solid Films 487:40–48. doi: 10.1016/j.tsf.2005.01.032 CrossRefGoogle Scholar
  20. Liu YL, Liu YC, Liu YX, Shen DZ, Lu YM, Zhang JY, Fan XW (2002) Structural and optical properties of nanocrystalline ZnO films grown by cathodic electrodeposition on Si substrates. Phys B 322:31–36. doi: 10.1016/S0921-4526(02)00594-X CrossRefGoogle Scholar
  21. Liu YL, Liu YC, Yang H, Wang WB, Ma JG, Zhang JY, Lu YM, Shen DZ, Fan XW (2003) The optical properties of ZnO filmsgrown on porous Si templates. J Phys D Appl Phys 36:2705–2708. doi: 10.1088/0022-3727/36/21/017 CrossRefGoogle Scholar
  22. Liu Ch, Masuda Y, Wu Y, Takai O (2006) A simple route for growing thin films of uniform ZnO nanorod arrays on functionalized Si surfaces. Thin Solid Films 503:110–114. doi: 10.1016/j.tsf.2005.12.075 CrossRefGoogle Scholar
  23. Mo CM, Li YH, Liu YS, Zhang Y, Zhang LD (1998) Enhancement effect of photoluminescence in assemblies of nano-ZnO particles/silica aerogels. J Appl Phys 83:4389–4392. doi: 10.1063/1.367198 CrossRefGoogle Scholar
  24. Okada Y, Tokumaru Y (1984) Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K. J Appl Phys 56:314–321. doi: 10.1063/1.333965 CrossRefGoogle Scholar
  25. Ozgur U, YaI Alivov, Liu C, Teke A, Reshchikov MA, Doğan S, Avrutin V, Cho SJ, Morkoç H (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98:041301–041404. doi: 10.1063/1.1992666 CrossRefGoogle Scholar
  26. Raiko V, Spitzl R, Engermann J, Borisenko V, Bondarenko V (1996) MPCVD diamond deposition on porous silicon pretreated with the bias method. Diam Relat Mater 5:1063–1067. doi: 10.1016/0925-9635(96)00514-6 CrossRefGoogle Scholar
  27. Wang ZL (2004) Nanostructures of zinc oxide. Mater Today 7:26–33. doi: 10.1016/S1369-7021(04)00286-X CrossRefGoogle Scholar
  28. Wang ZL (2008) Towards self-powered nanosystems: from nanogenerators to nanopiezotronics. Adv Funct Mat 18:3553–3567. doi: 10.1002/adfm.200800541 CrossRefGoogle Scholar
  29. Yakovtseva V, Vorozov N, Dolgyi L, Levchenko V, Postnova L, Balucani M, Bondarenko V, Lamedica G, Ferrara V, Ferrari A (2000) Porous silicon: a buffer layer for PbS heteroepitaxy. Phys Status Solidi (a) 182:195–199. doi: 10.1002/1521-96X(200011)182:1<195:AID-PSSA195>3.0.CO;2-G CrossRefGoogle Scholar
  30. Zhang WC, Wu XL, Chen HT, Zhu J, Huang GS (2008) Excitation wavelength dependence of the visible photoluminescence from amorphous ZnO granular films. J Appl Phys 103:093718–093723. doi: 10.1063/1.2924421 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • M. Balucani
    • 1
  • P. Nenzi
    • 1
  • E. Chubenko
    • 2
  • A. Klyshko
    • 2
  • V. Bondarenko
    • 2
  1. 1.Electronic DepartmentSapienza Rome UniversityRomeItaly
  2. 2.Micro and Nanoelectronics DepartmentBelarusian State University of Informatics and RadioelectronicsMinskBelarus

Personalised recommendations