Advertisement

Journal of Nanoparticle Research

, Volume 13, Issue 9, pp 4015–4023 | Cite as

Mesoscopic phenomena in oxide nanoparticles systems: processes of growth

  • Tetyana Konstantinova
  • Igor Danilenko
  • Valentina Glazunova
  • Galina Volkova
  • Oksana Gorban
Research Paper

Abstract

The process of nanoparticles growth has been investigated and discussed in terms of mesoscopic approach on example of ZrO2–3 mol%Y2O3 system. Growth process of nanoparticles synthesized by co-precipitation has three stages: cooperative-oriented crystallization of ordered areas in xerogel polymer matrix and disintegration of crystallized areas (350–400 °C); oriented attachment of particles into single crystal caused by electrostatic interaction (400–600 °C); attachment of particles to single and poly-crystals by oxygen diffusion through vacancies in surface layers of joining crystals (600–1,000 °C). Proposed conception on mesoscopic processes of nanoparticles formation make the understanding and theoretical description of significant amount of experimental data possible and open the way for purposeful governing by oxide powder system on the stages of obtaining, compaction, and sintering.

Keywords

Zirconia nanopowders Nanoparticles growth mechanisms Oriented crystallization Oriented attachment Sewing of nanoparticles Oxygen-vacancy diffusion Synthesis 

Notes

Acknowledgments

The authors thank Dr. J. Wang (PSU MCL), Dr. A.V. Ragulya (IMS NASU), and Dr. I. Popov (Hebrew University Center for Nanoscience and Nanotechnology) for carrying out HRTEM and STEM study of powders, prof. Tokyy V. (DonPhTI NASU) for discussion results of computer simulation. The work was granted by the National Academy of Sciences of Ukraine by Program “Fundamental problems of Nanosystems, Nanomaterials, Nanotechnologies”, project No 89/H11.

References

  1. Arharov VI (1980) Mesoscopic phenomena in solid state and their microstructure. Problems of modern physics. Moscow, Russia. Science 609–617Google Scholar
  2. Banfield Y, Welch S, Zhang H, Ebert T, Penn R (2000) Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 289:751–754CrossRefGoogle Scholar
  3. Belous AG, Krovchuk KV, Pashkova OV, YuP Gomza, Nesin SD (2010) Spontaneous fractal ordering of zirconium oxide nanoparticles during synthesis from solution. JECS 30:141–145CrossRefGoogle Scholar
  4. Brossmann U, Wűrschum R, Śodervall U, Schaefaefer H (1999) Oxygen diffusion in ultrafine grains monoclinic ZrO2. J Appl Phys 85:7646–7654CrossRefGoogle Scholar
  5. Brunauer S, Emmet PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60(2):309–319CrossRefGoogle Scholar
  6. Chevalier J, Gremillard L, Virkar Anil V, Clarke David R (2009) The tetragonal to monoclinic transformation in zirconia: lessons learned and future trends. J Am Ceram Soc 92(9):1901–1920CrossRefGoogle Scholar
  7. Doroshkevich A, Danilenko I, Konstantinova T, Volkova G, Glazunova V (2010) Structural evolution of zirconia nanopowders as a cagulation process. Crystallogr Rep 55(5):863–865CrossRefGoogle Scholar
  8. Frolova E, Ivanovskaya M (2004) Origin of paramagnetic centers in GeO2–ZrO2 prepared by coprecipitation in aqueous solution. Solid State Ionics 173(1–4):125–130CrossRefGoogle Scholar
  9. Hyeon-Lee J, Beaucage G, Pratsinis SE, Vemury S (1998) Fractal analysis of flame-synthesized nanostructured silica and titania powders using small-angle X-ray scattering. Langmuir 14:5751–5756CrossRefGoogle Scholar
  10. Imry Y (2002) Introduction to mesoscopic physics, 2nd edn, Oxford University Press, New YorkGoogle Scholar
  11. Klug A, Alexander L (1974) X-ray diffraction procedures. Wiley Interscience, New-York, p 125Google Scholar
  12. Konstantinova T, Danilenko I, Dobrikov A, Volkova G, Tokyy V, Gorban S (2002) TEM, ESR and XRD studies of thermally induced formation nanocrystalline zirconia. CIMTECGoogle Scholar
  13. Konstantinova T, Danilenko I, Pilipenko N, Volkova G (2003) Nanomaterials for SOFC electrolytes and anodes on the base of zirconia. Electrochem Soc Proc 7:153–159Google Scholar
  14. Konstantinova T, Ragulya A, Doroshkevich A, Volkova G, Glazunova V (2006) The mechanisms of particle formation in Y doped ZrO2. Int J Nanotechnol 3(1)Google Scholar
  15. Lifshitz I, Slyozov V (1961) The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids 19:35–50CrossRefGoogle Scholar
  16. Liu H, Feng L, Zhang X, Xue Q (1995) ESR characterization of ZrO2 nanopowders. J Phys Chem 99:332–334CrossRefGoogle Scholar
  17. Livage Y, Doi K, Mazierec C (1968) Nature and thermal evolution of amorphous hydrated zirconium oxide. 51. J Am Cer Soc 6:349–353CrossRefGoogle Scholar
  18. Oskam G, Hu Z, Penn R, Pesika N, Searson P (2002) Coarsening of metal oxide nanoparticles. Phys Rev 66(011403):1–4Google Scholar
  19. Ribeiro C, Lee E, Longo E, Leite E (2005) A kinetic model to describe nanocrystal growth by the oriented attachment mechanism. Chemphyschem 6(4):690–696CrossRefGoogle Scholar
  20. Roldughin V (2004) Self-assembly of nanoparticles of interfaces. Rus Chem Rev 73:115–121CrossRefGoogle Scholar
  21. Savina DL, Tokiy VV, Konstantinova TE, Tokyy NV (2008) Transport phenomena in near-surface layers of zirconia. Rus Nanosyst Nanomater Nanotechnol 6(3):725–730Google Scholar
  22. Sukharev Yu, Markov B, Antonenko I (2002) Circular auto wave pacemakers in thin-layered zirconium oxyhydrate. Chem Phys lett 356:55–62CrossRefGoogle Scholar
  23. Tokiy N, Konstantinova T, Tokiy V, Savina D (2003) Influence of oxygen vacancies and 26-d impurity on electronic and transport properties of zirconia. Electrochem Soc proc 7:181–186Google Scholar
  24. Tokiy N, Tokiy V, Savina D, Konstantinova T (2007) Transport phenomena in surficial layers of zirconia proceedings of X-international conference. Hydrogen Mater Sci Chem Carbon Nanomat 172:499–508Google Scholar
  25. Tretyakov Y (2003) Self-organization processes in the chemistry of materials. Russ Chem Rev 72:651CrossRefGoogle Scholar
  26. Wagner C (1961) Theorie der alterung von niedel-schlägen durch umlösen (ostwald-reifung). Electrochem 65:581–591Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Tetyana Konstantinova
    • 1
  • Igor Danilenko
    • 1
  • Valentina Glazunova
    • 1
  • Galina Volkova
    • 1
  • Oksana Gorban
    • 1
  1. 1.Donetsk Institute for Physics and Engineering of the NAS of UkraineDonetskUkraine

Personalised recommendations