Skip to main content
Log in

Mesoscopic phenomena in oxide nanoparticles systems: processes of growth

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The process of nanoparticles growth has been investigated and discussed in terms of mesoscopic approach on example of ZrO2–3 mol%Y2O3 system. Growth process of nanoparticles synthesized by co-precipitation has three stages: cooperative-oriented crystallization of ordered areas in xerogel polymer matrix and disintegration of crystallized areas (350–400 °C); oriented attachment of particles into single crystal caused by electrostatic interaction (400–600 °C); attachment of particles to single and poly-crystals by oxygen diffusion through vacancies in surface layers of joining crystals (600–1,000 °C). Proposed conception on mesoscopic processes of nanoparticles formation make the understanding and theoretical description of significant amount of experimental data possible and open the way for purposeful governing by oxide powder system on the stages of obtaining, compaction, and sintering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arharov VI (1980) Mesoscopic phenomena in solid state and their microstructure. Problems of modern physics. Moscow, Russia. Science 609–617

  • Banfield Y, Welch S, Zhang H, Ebert T, Penn R (2000) Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 289:751–754

    Article  CAS  Google Scholar 

  • Belous AG, Krovchuk KV, Pashkova OV, YuP Gomza, Nesin SD (2010) Spontaneous fractal ordering of zirconium oxide nanoparticles during synthesis from solution. JECS 30:141–145

    Article  CAS  Google Scholar 

  • Brossmann U, Wűrschum R, Śodervall U, Schaefaefer H (1999) Oxygen diffusion in ultrafine grains monoclinic ZrO2. J Appl Phys 85:7646–7654

    Article  CAS  Google Scholar 

  • Brunauer S, Emmet PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60(2):309–319

    Article  CAS  Google Scholar 

  • Chevalier J, Gremillard L, Virkar Anil V, Clarke David R (2009) The tetragonal to monoclinic transformation in zirconia: lessons learned and future trends. J Am Ceram Soc 92(9):1901–1920

    Article  CAS  Google Scholar 

  • Doroshkevich A, Danilenko I, Konstantinova T, Volkova G, Glazunova V (2010) Structural evolution of zirconia nanopowders as a cagulation process. Crystallogr Rep 55(5):863–865

    Article  CAS  Google Scholar 

  • Frolova E, Ivanovskaya M (2004) Origin of paramagnetic centers in GeO2–ZrO2 prepared by coprecipitation in aqueous solution. Solid State Ionics 173(1–4):125–130

    Article  CAS  Google Scholar 

  • Hyeon-Lee J, Beaucage G, Pratsinis SE, Vemury S (1998) Fractal analysis of flame-synthesized nanostructured silica and titania powders using small-angle X-ray scattering. Langmuir 14:5751–5756

    Article  CAS  Google Scholar 

  • Imry Y (2002) Introduction to mesoscopic physics, 2nd edn, Oxford University Press, New York

    Google Scholar 

  • Klug A, Alexander L (1974) X-ray diffraction procedures. Wiley Interscience, New-York, p 125

    Google Scholar 

  • Konstantinova T, Danilenko I, Dobrikov A, Volkova G, Tokyy V, Gorban S (2002) TEM, ESR and XRD studies of thermally induced formation nanocrystalline zirconia. CIMTEC

  • Konstantinova T, Danilenko I, Pilipenko N, Volkova G (2003) Nanomaterials for SOFC electrolytes and anodes on the base of zirconia. Electrochem Soc Proc 7:153–159

    Google Scholar 

  • Konstantinova T, Ragulya A, Doroshkevich A, Volkova G, Glazunova V (2006) The mechanisms of particle formation in Y doped ZrO2. Int J Nanotechnol 3(1)

  • Lifshitz I, Slyozov V (1961) The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids 19:35–50

    Article  Google Scholar 

  • Liu H, Feng L, Zhang X, Xue Q (1995) ESR characterization of ZrO2 nanopowders. J Phys Chem 99:332–334

    Article  CAS  Google Scholar 

  • Livage Y, Doi K, Mazierec C (1968) Nature and thermal evolution of amorphous hydrated zirconium oxide. 51. J Am Cer Soc 6:349–353

    Article  Google Scholar 

  • Oskam G, Hu Z, Penn R, Pesika N, Searson P (2002) Coarsening of metal oxide nanoparticles. Phys Rev 66(011403):1–4

    Google Scholar 

  • Ribeiro C, Lee E, Longo E, Leite E (2005) A kinetic model to describe nanocrystal growth by the oriented attachment mechanism. Chemphyschem 6(4):690–696

    Article  CAS  Google Scholar 

  • Roldughin V (2004) Self-assembly of nanoparticles of interfaces. Rus Chem Rev 73:115–121

    Article  CAS  Google Scholar 

  • Savina DL, Tokiy VV, Konstantinova TE, Tokyy NV (2008) Transport phenomena in near-surface layers of zirconia. Rus Nanosyst Nanomater Nanotechnol 6(3):725–730

    CAS  Google Scholar 

  • Sukharev Yu, Markov B, Antonenko I (2002) Circular auto wave pacemakers in thin-layered zirconium oxyhydrate. Chem Phys lett 356:55–62

    Article  CAS  Google Scholar 

  • Tokiy N, Konstantinova T, Tokiy V, Savina D (2003) Influence of oxygen vacancies and 26-d impurity on electronic and transport properties of zirconia. Electrochem Soc proc 7:181–186

    Google Scholar 

  • Tokiy N, Tokiy V, Savina D, Konstantinova T (2007) Transport phenomena in surficial layers of zirconia proceedings of X-international conference. Hydrogen Mater Sci Chem Carbon Nanomat 172:499–508

    Google Scholar 

  • Tretyakov Y (2003) Self-organization processes in the chemistry of materials. Russ Chem Rev 72:651

    Article  CAS  Google Scholar 

  • Wagner C (1961) Theorie der alterung von niedel-schlägen durch umlösen (ostwald-reifung). Electrochem 65:581–591

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. J. Wang (PSU MCL), Dr. A.V. Ragulya (IMS NASU), and Dr. I. Popov (Hebrew University Center for Nanoscience and Nanotechnology) for carrying out HRTEM and STEM study of powders, prof. Tokyy V. (DonPhTI NASU) for discussion results of computer simulation. The work was granted by the National Academy of Sciences of Ukraine by Program “Fundamental problems of Nanosystems, Nanomaterials, Nanotechnologies”, project No 89/H11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetyana Konstantinova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konstantinova, T., Danilenko, I., Glazunova, V. et al. Mesoscopic phenomena in oxide nanoparticles systems: processes of growth. J Nanopart Res 13, 4015–4023 (2011). https://doi.org/10.1007/s11051-011-0329-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0329-8

Keywords

Navigation