Journal of Nanoparticle Research

, Volume 13, Issue 9, pp 3643–3656 | Cite as

New organometallic salts as precursors for the functionalization of carbon nanotubes with metallic nanoparticles

  • G. Alonso-Núñez
  • L. Morales de la Garza
  • E. Rogel-Hernández
  • E. Reynoso
  • A. Licea-Claverie
  • R. M. Felix-Navarro
  • G. Berhault
  • F. Paraguay-Delgado
Research Paper


New organometallic salts were synthesized in aqueous solution and were used as precursors for the functionalization of carbon nanotubes (CNT) by metallic nanoparticles. The precursors were obtained by reaction between HAuCl4, (NH4)2PtCl6, (NH4)2PdCl6, or (NH4)3RhCl6 with cetyltrimethylammonium bromide (CTAB). The as-obtained (CTA) n Me x Cl y salts (with Me = Au, Pt, Pd, Rh) were characterized by Fourier-transform infra-red (FTIR) spectroscopy, 1H nuclear magnetic resonance (NMR) spectroscopy, and thermogravimetric analysis. These precursors were then used to synthesize metallic nanoparticles of Au, Pt, Pd, and Rh over multiwalled carbon nanotubes (MWCNT). Characterization by scanning transmission electron microscopy (STEM) and thermogravimetric analysis under air reveals that the CNT-supported catalysts exhibit high loading and good dispersion of the metallic nanoparticles with small average particle sizes. The present preparation procedure therefore allows obtaining high densities of small metallic nanoparticles at the surface of MWCNT.


Organometallic salts CTAB Metallic nanoparticles MWCNT Synthesis 



We gratefully acknowledge for their technical support R. A. Villegas, C. Ornelas, D. Lardizabal, and W. Antúnez from Laboratorio Nacional de Nanotecnologia at CIMAV-Chihuahua, I. Gradilla from CNyN, PAPIIT Project IN102509, Red de Nanociencias y Nanotecnologia-Conacyt as well as A. Vega-Rios from the CGI at IT-Tijuana.


  1. Aguilar A, Antúnez W, Alonso G, Paraguay-Delgado F, Espinosa F, Miki-Yoshida M (2006) Study of carbon nanotubes synthesis by spray pyrolysis and model of growth. Diamond Relat Mater 15:1329–1335CrossRefGoogle Scholar
  2. Alonso-Núñez G, Valenzuela-Muñiz AM, Paraguay-Delgado F, Aguilar A, Verde Y (2006) New organometallic precursor catalysts applied to MWCNT synthesis by spray pyrolysis. Opt Mater 29:134–139CrossRefGoogle Scholar
  3. Aricò AS, Bruce P, Scrosati B, Tarascon JM, van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377CrossRefGoogle Scholar
  4. Berhault G, Bausach M, Bisson L, Becerra L, Thomazeau C, Uzio D (2007) Seed-mediated synthesis of Pd nanocrystals: factors influencing a kinetic- or thermodynamic-controlled growth regime. J Phys Chem C 111:5915–5925CrossRefGoogle Scholar
  5. Britto PJ, Santhanam KSV, Rubio A, Alonso JA, Ajayan PM (1999) Improved charge transfer at carbon nanotube electrodes. Adv Mater 11:154–157CrossRefGoogle Scholar
  6. Cui GL, Zhou XH, Zhi LJ, Thomas A, Müllen K (2007) Carbon/nanostructured Ru composites as electrodes for supercapacitors. New Carbon Mater 22:302–306CrossRefGoogle Scholar
  7. Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase synthesis of inorganic nanoparticles. Chem Rev 104:3893–3946CrossRefGoogle Scholar
  8. Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386:377–379CrossRefGoogle Scholar
  9. Goettmann F, Fischer A, Antonietti M, Thomas A (2006) Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for Friedel-Crafts reaction of benzene. Angew Chem Int Ed 45:4467–4471CrossRefGoogle Scholar
  10. Guo DJ, Li HL (2004) Electrochemical synthesis of Pd nanoparticles on functional MWNT surfaces. Electrochem Commun 6:999–1003CrossRefGoogle Scholar
  11. Hu YS, Guo YG, Sigle W, Hore S, Balaya P, Maier J (2006) Electrochemical lithiation synthesis of nanoporous materials with superior catalytic and capacitive activity. Nat Mater 5:713–717CrossRefGoogle Scholar
  12. Hu MJ, Lu Y, Zhang S, Guo SR, Lin B, Zhang M, Yu SH (2008) High yield synthesis of bracelet-like hydrophilic Ni–Co magnetic alloy flux-closure nanorings. J Am Chem Soc 130:11606–11607CrossRefGoogle Scholar
  13. Kreke PJ, Magid LJ, Gee JC (1996) 1H and 13C NMR studies of mixed counterion, cetyltrimethylammonium bromide/cetyltrimethylammonium dichlorobenzoate, surfactant solutions: the intercalation of aromatic counterions. Langmuir 12:699–705CrossRefGoogle Scholar
  14. Malik K, Mandal M, Pradhan N, Pal T (2001) Seed mediated formation of bimetallic nanoparticles by UV irradiation: a photochemical approach for the preparation of “core-shell” type structures. Nano Lett 1:319–322CrossRefGoogle Scholar
  15. Mizukoshi Y, Takagi E, Okuno H, Oshima R, Maeda Y, Nagata Y (2001) Preparation of platinum nanoparticles by sonochemical reduction of the Pt(IV) ions: role of surfactants. Ultrason Sonochem 8:1–6CrossRefGoogle Scholar
  16. Morgan JD, Napper DH, Warr GG, Nicol SK (1994) Measurement of the selective adsorption of ions at air/surfactant solution interfaces. Langmuir 10:797–801CrossRefGoogle Scholar
  17. Mori K, Sugihara K, Kondo Y, Takeuchi T, Morimoto S, Yamashita H (2008) Synthesis and characterization of core-shell FePt@Ti-containing silica spherical nanocomposite as a catalyst carrier for liquid-phase reactions. J Phys Chem C 112:16478–16483CrossRefGoogle Scholar
  18. Neivandt DJ, Gee ML, Tripp CP, Hair ML (1997) Coadsorption of poly(styrenesulfonate) and cétyltriméthylammonium bromide on silica investigated by attenuated total reflection techniques. Langmuir 13:2519–2526CrossRefGoogle Scholar
  19. Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1961CrossRefGoogle Scholar
  20. Pal A, Shah S, Belochapkine S, Tanner D, Magner E, Devi S (2009) Room temperature synthesis of platinum nanoparticles in water-in-oil microemulsion. Coll Surf A Physicochem Eng Aspects 337:205–207CrossRefGoogle Scholar
  21. Pérez-Juste J, Liz-Marzán L, Carnie S, Chan DYC, Mulvaney P (2004) Electric-field-directed growth of gold nanorods in aqueous surfactant solutions. Adv Funct Mater 14:571–579CrossRefGoogle Scholar
  22. Planeix JM, Coustel N, Coq B (1994) Application of carbon nanotubes as supports in heterogeneous catalysis. J Am Chem Soc 116:7935–7936CrossRefGoogle Scholar
  23. Sellin R, Clacens JM, Coutanceau C (2010) A thermogravimetric analysis/mass spectroscopy study of the thermal and chemical stability of carbon in the Pt/C catalytic system. Carbon 48:2244–2254CrossRefGoogle Scholar
  24. Sui ZM, Chen X, Wang LY, Xu LM, Zhuang WC, Chai YC, Yang CJ (2006) Capping effect of CTAB on positively charged Ag nanoparticles. Physica E 33:308–314CrossRefGoogle Scholar
  25. Veisz B, Kiraly Z (2003) Size-selective synthesis of cubooctahedral palladium particles mediated by metallomicelles. Langmuir 19:4817–4824CrossRefGoogle Scholar
  26. Verde Y, Alonso G, Miki M, Jose-Yacaman M, Ramos VH, Keer A (2005) Active area and particle size of Pt particles synthesized from (NH4)2PtCl6 on a carbon support. Catal Today 107:826–830CrossRefGoogle Scholar
  27. Verde Y, Keer A, Miki-Yoshida M, Paraguay-Delgado F, Alonso-Núñez G, Avalos-Borja M (2007) Aqueous deposition of metals on multiwalled carbon nanotubes to be used as electrocatalyst for polymer exchange membrane fuel cells. J Fuel Cells Tech 4:130–133CrossRefGoogle Scholar
  28. Wang M, Woo KD, Kim DK (2006) Preparation of Pt nanoparticles on carbon nanotubes by hydrothermal method. Energy Conv Manag 47:3235–3240CrossRefGoogle Scholar
  29. Wildgoose GG, Banks CE, Compton RG (2006) Metal nanoparticles and related materials supported on carbon nanotubes: methods and applications. Small 2:182–193CrossRefGoogle Scholar
  30. Yürüm Y, Taralp A, Veziroglu TN (2009) Storage of hydrogen in nanostructured carbon materials. Int J Hydrogen Energy 34:3784–3798CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • G. Alonso-Núñez
    • 1
  • L. Morales de la Garza
    • 1
  • E. Rogel-Hernández
    • 1
    • 2
  • E. Reynoso
    • 1
  • A. Licea-Claverie
    • 3
  • R. M. Felix-Navarro
    • 3
  • G. Berhault
    • 4
  • F. Paraguay-Delgado
    • 5
  1. 1.Centro de Nanociencias y NanotecnologíaUniversidad Nacional Autónoma de MéxicoEnsenadaMéxico
  2. 2.Facultad de Ciencias Químicas e IngenieríaUniversidad Autónoma de Baja CaliforniaMesa de Otay, TijuanaMéxico
  3. 3.Instituto Tecnológico de Tijuana, Centro de Graduados e InvestigaciónTijuanaMéxico
  4. 4.Institut de Recherches sur la Catalyse et l’Environnement de LyonUMR 5256 CNRS—Université de LyonVilleurbanneFrance
  5. 5.Centro de Investigación en Materiales Avanzados S. C.ChihuahuaMéxico

Personalised recommendations