Journal of Nanoparticle Research

, Volume 13, Issue 8, pp 3455–3464 | Cite as

Metal-on-oxide nanoparticles produced using laser ablation of microparticle aerosols

  • Manuj Nahar
  • Ignacio F. Gallardo
  • Kristofer L. Gleason
  • Michael F. Becker
  • John W. Keto
  • Desiderio Kovar
Research paper


A continuous aerosol process has been studied for producing nanoparticles of oxides that were decorated with smaller metallic nanoparticles and are free of organic stabilizers. To produce the oxide carrier nanoparticles, an aerosol of 3–6 μm oxide particles was ablated using a pulsed excimer laser. The resulting oxide nanoparticle aerosol was then mixed with 1.5–2.0 μm metallic particles and this mixed aerosol was exposed to the laser for a second time. The metallic micron-sized particles were ablated during this second exposure, and the resulting nanoparticles deposited on the surface of the oxide nanoparticles producing an aerosol of 10–60 nm oxide nanoparticles that were decorated with smaller 1–5 nm metallic nanoparticles. The metal and oxide nanoparticle sizes were varied by changing the laser fluence and gas type in the aerosol. The flexibility of this approach was demonstrated by producing metal-decorated oxide nanoparticles using two oxides, SiO2 and TiO2, and two metals, Au and Ag.


Nanoparticle Gold Titania Multiconsituent Laser ablation Aerosols Synthesis 



This work was supported by the National Science Foundation under CBET 0708779. The authors like to acknowledge helpful discussions with Dr. J.P. Zhou and useful technical help from Ms. Hoda Tabakoli.


  1. Arici E, Meissner D, Schaafler F, Sacriciftci NS (2003) Core/shell nanomaterials in photovoltaics. Int J Photoenergy 5(4):199–208CrossRefGoogle Scholar
  2. Averitt RD, Westcott SL, Halas NJ (1999) Linear optical properties of gold nanoshells. J Opt Soc 16(10):1824–1832CrossRefGoogle Scholar
  3. Bailey RE, Nie S (2003) Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. J Am Chem Soc 125(23):7100–7106CrossRefGoogle Scholar
  4. Cai H, Chaudhary N, Lee J, Becker MF, Brock JR, Keto JW (1998) Generation of metal nanoparticles by laser ablation of microspheres. J Aerosol Sci 29(5–6):627CrossRefGoogle Scholar
  5. Chen MS, Goodman DW (2004) The structure of catalytically active gold on titania. Science 306(5694):252–255CrossRefGoogle Scholar
  6. Gallardo I (2008) Tuning of core-shell heterostructured nanoparticles generated by laser ablation of microparticles. Dissertation, the University of Texas at AustinGoogle Scholar
  7. Gallardo I, Hoffman K, Keto JW (2009) CdSe & ZnS core/shell nanoparticles generated by laser ablation of microparticles. Appl Phys 94(1):65–72Google Scholar
  8. Herzing AA, Kiely CJ, Carley AF, Landon P, Hutchings GJ (2008) Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science 321(5894):1331–1335CrossRefGoogle Scholar
  9. Karamkar B, De G, Ganguli D (2000) Dense silica microspheres from organic and inorganic acid hydrolysis of TEOS. J Non-Cryst Solids 272(2–3):119–126CrossRefGoogle Scholar
  10. Keto JW, Malyavanatham G, Muller A, O’Brien DT, Shih CK, Becker MF, Kovar D (2006) Nanoparticles of Er-doped glass produced by laser ablation of microparticles. J Nanopart Res 23(8):1582–1585Google Scholar
  11. Lee J, Becker MF, Keto JW (2001) Dynamics of laser ablation of microparticles prior to nanoparticle generation. J Appl Phys 89(12):8146–8152CrossRefGoogle Scholar
  12. Libor Z, Zhang Q (2009) Room temperature synthesis, growth mechanism, photocatalytic and photoluminescence properties of cadmium molybdate core-shell microspheres. Cryst Growth Des 9(3):1558–1568CrossRefGoogle Scholar
  13. Lynch DW, Hunter WR (1985) Optical Constants of Metals. In: Palik Ed, Gosh G (eds) Handbook of optical constants of solids. Academic Press handbook series, Orlando, pp 350–357Google Scholar
  14. Meng L, Song ZX (2004) Applications of quantum dots to biological medicine. Prog Biochem Biophys 31(2):185–187Google Scholar
  15. Nichols WT, Malyavanatham G, Henneke DE, O’Brien DT, Becker MF, Keto JW (2002) Bimodal nanoparticle size distributions produced by laser ablation of microparticles in aerosols. J Nanopart Res 4(5):423–432CrossRefGoogle Scholar
  16. Park YP, Zhang Y, Grass M, Zhabg T, Somorjai GA (2008) Tuning of catalytic oxidation by changing composition of Rh-Pt bimetallic nanoparticles. Nano Letters 8(2):673–677CrossRefGoogle Scholar
  17. Park JY, Aliaga C, Renzas JR, Lee H, Somorjai GA (2009) The role of organic capping layers of platinum nanoparticles in catalytic activity of CO oxidation. Catal Lett 129(1):1–6CrossRefGoogle Scholar
  18. Phadke S, Sorge JD, Hachtmann S, Birnie IIDP (2010) Broad band optical characterization of sol–gel TiO2 thin film microstructure evolution with temperature. Thin Solid Films 518(19):5467–5470CrossRefGoogle Scholar
  19. Tan GL, Lemon MF, French RH (2003) Optical properties and London dispersion forces of amorphous silica determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry. J Am Ceram Soc 86(11):1885–1892CrossRefGoogle Scholar
  20. Vuthichai E, Yusuke K (2009) Synthesis and characterization of core-shell type Fe3O4 nanoparticles in poly (organosilsesquioxane). J Colloid Interf Sci 332(2):389–393CrossRefGoogle Scholar
  21. Wang L, Tomura S, Maeda M, Ohashi F, Inukai K, Suzuki M (2000) Synthesis of mesoporous titania spheres under static conditions. Chem Lett 10(12):1414–1415CrossRefGoogle Scholar
  22. Wang G, Xiaoping S, Jane Y, David W, Jung-Ho A (2009a) Hydrothermal synthesis of carbon nanotube/cobalt oxide core-shell one-dimensional nanocomposite and application as an anode material for lithium-ion batteries. Electrochem Commun 11(3):546–549CrossRefGoogle Scholar
  23. Wang WS, Zhen L, Xu CY, Shao WZ (2009b) Room temperature synthesis, growth mechanism, photocatalytic and photoluminescence properties of cadmium molybdate core-shell microspheres. Cryst Grow Des 9(3):1558–1568CrossRefGoogle Scholar
  24. Zhang HT, Ding J, Chow GM (2009) Synthesis and characterizations of Ni–Fe-spinel oxide core-shell nanoparticles. Mater Res Bull 44(5):1195–1199CrossRefGoogle Scholar
  25. Zhong CJ, Maye MM (2001) Core-shell assembled nanoparticles as catalysts. Adv Mater 13(9):1507–1511CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Manuj Nahar
    • 1
  • Ignacio F. Gallardo
    • 2
  • Kristofer L. Gleason
    • 3
  • Michael F. Becker
    • 1
    • 3
  • John W. Keto
    • 1
    • 2
  • Desiderio Kovar
    • 1
    • 4
  1. 1.Materials Science and Engineering ProgramUniversity of Texas at AustinAustinUSA
  2. 2.Department of PhysicsUniversity of Texas at AustinAustinUSA
  3. 3.Department of Electrical and Computer EngineeringUniversity of Texas at AustinAustinUSA
  4. 4.Department of Mechanical EngineeringUniversity of Texas at AustinAustinUSA

Personalised recommendations