Journal of Nanoparticle Research

, Volume 13, Issue 11, pp 5635–5640 | Cite as

Optical measurements of field-induced phenomena of the magnetic phase transition in quasi 2D MnS layers grown by MBE

  • M. Demper
  • W. Heimbrodt
  • C. Bradford
  • K. A. Prior
Special Issue: Nanostructured Materials 2010


We used a sensitive optical method to study the magnetic phase transition of antiferromagnetic MnS layers. The method is applicable for very small numbers of spins, e.g., thin single layers. We studied the optical and magnetic properties of MnS layers using the internal optical transition of the manganese 3d-shell. The temperature dependence of the Mn-emission exhibits a pronounced minimum revealing the para- to anti-ferromagnetic phase transition. The MnS layers were grown by molecular beam epitaxy, embedded between diamagnetic ZnSe cladding layers on a (100)-GaAs substrate. It was found that the Néel-temperature itself is influenced by the biaxial strain and can be changed in an external magnetic field in case of quasi 2D MnS-layers. The phase diagram reveals a weak Ising like anisotropic contribution in case of a 1.8 nm thin layer, whereas a 8.6 nm thick layer behaves still like an ideal isotropic Heisenberg system.


MnS Antiferromagnetism Optical spectroscopy Nanolayers 


  1. Biernacki S, Kutrowski M, Karczewski G, Wojtowicz T, Kossut J (1996) Temperature variation of the Mn2+ luminescence spectra in Cd1-xMnxTe. Semicond Sci Technol 11:48CrossRefGoogle Scholar
  2. Carter WS (1960) The specific heat of two polymorphic forms of manganous sulphides and the inferred possibility of antiferromagnetic ordering in stacking faults. Proc Phys Soc 76:969CrossRefGoogle Scholar
  3. Čižmár E, Zvyagin SA, Beyer R, Uhlarz M, Ozerov M, Skourski Y, Manson JL, Schlueter JA, Wosnitza J (2010) Magnetic properties of the quasi-two-dimensional \(S={\frac{1}{2}}\) Heisenberg antiferromagnet [Cu (pyz)2 (HF2)] PF 6. Phys Rev B 81:064422CrossRefGoogle Scholar
  4. Cuccoli A, Roscilde T, Vaia R, Verrucchi P (2003) Field-induced XY behavior in the \(S={\frac{1}{2}}\) antiferromagnet on the square lattice. Phys Rev B 68(6):060402CrossRefGoogle Scholar
  5. David L, Bradford C, Tang X, Graham TCM, Prior KA, Cavenett BC (2003) Growth of zinc blende MnS and MnS heterostructures by MBE using ZnS as a sulfur source. J Cryst Growth 251:591CrossRefGoogle Scholar
  6. De Groot HJM, De Jongh LJ (1986) Phase diagrams of weakly anisotropic Heisenberg antiferromagnets, nonlinear excitations (solitons) and random-field effects. Physica B+C 141:1CrossRefGoogle Scholar
  7. Demper M, Chen L, Bradford C, Prior KA, Heimbrodt W (2010) Dimensional dependence of the energy transfer in MBE grown MnS layers. Solid State Commun 150:1092CrossRefGoogle Scholar
  8. den Broeder FJA, Hoving W, Bloemen PJH (1991) Magnetic anisotropy of multilayers. J Magn Magn Mater 93:562CrossRefGoogle Scholar
  9. Fan D, Yang X, Wang H, Zhang Y, Yan H (2003) Photoluminescence of MnS thin film prepared by chemical bath deposition. Physica B 337:165CrossRefGoogle Scholar
  10. Giebultowicz TM, Klosowski TM, Rhyne JJ, Samarth N, Luo H , Furdyna JK (1992) Incommensurable antiferromagnetic order in strained layer MnSe/ZnTe superlattices. Physica A 180:485CrossRefGoogle Scholar
  11. Giebultowicz TM, Klosowski P, Samarth N, Luo H, Furdyna JK, Rhyne JJ (1993) Neutron-diffraction studies of zinc-blende MnTe epitaxial films and MnTe/ZnTe superlattices: the effect of strain and dilution on a strongly frustrated fcc antiferromagnet. Phys Rev B 48:12817CrossRefGoogle Scholar
  12. Giebultowicz TM, Faschinger W, Nunez V, Klosowski P, Bauer G, Sitter H, Furdyna JK (1994) Antiferromagnetic spin ordering and interlayer magnetic correlation in MnTe/CdTe superlattices. J Cryst Growth 138:877CrossRefGoogle Scholar
  13. Goede O, Heimbrodt W (1988) Optical properties of (Zn, Mn) and (Cd, Mn) chalcogenide mixed crystal and superlattices. PSS (b) 146:11CrossRefGoogle Scholar
  14. Heimbrodt W, Klar PJ (2004) Magnetic semiconductor nanostructures. ENN 4:835Google Scholar
  15. Heimbrodt W, Benecke C, Goede O, Gumlich HE (1989) Optical effects due to antiferromagnetic spin-ordering in (Cd,Mn)S at highest Mn concentrations. PSS (b) 154:405CrossRefGoogle Scholar
  16. Heimbrodt W, Chen L, Krug von Nidda HA, Loidl A, Klar PJ, David L, Prior KA (2008) Optical and magnetic properties of MBE-grown manganese sulfide layers. J Kor Phys Soc 53:2852CrossRefGoogle Scholar
  17. Huffman DR, Wild RL (1966) Specific heat of MnS through the Néel-temperature. Phys Rev 148:526CrossRefGoogle Scholar
  18. Klosowski P, Giebultowicz TM, Rhyne JJ, Samarath N, Luo H, Furdyna JK (1991) Antiferromagnetic ordering in MnSe/ZnSe multilayers. J Appl Phys 69:6109CrossRefGoogle Scholar
  19. Kurz T, Chen L, Brieler FJ, Klar PJ, Krug von Nidda HA, Fröba M, Heimbrodt W, Loidl A (2008) Minimal number of atoms to constitute a magnet: suppression of magnetic order in spherical MnS nanoparticles. Phys Rev B 78:132408CrossRefGoogle Scholar
  20. Lee DH, Joannopoulos JD, Negele JD, Landau JD (1984) Discrete-symmetry breaking and novel critical phenomena in an antiferromagnetic planar (XY) model in two dimensions. Phys Rev Lett 52:433CrossRefGoogle Scholar
  21. Lokhande CD, Ennaoui A, Patil PS, Giersig M, Muller M, Diesner K, Tributsch H (1998) Process and characterization of chemical bath deposited manganese sulphide (MnS) thin films. Thin Solid Films 330:70CrossRefGoogle Scholar
  22. MacKay JF, Becker WM, Spalek J, Debska J (1990) Temperature and magnetic-field dependence of the Mn2+ 4T1(4G) → 6A1(6S) photoluminescence band in Zn0.5Mn0.5Se. Phys Rev B 42:1743CrossRefGoogle Scholar
  23. Müller E, Gebhardt W (1986) Position and lifetime of photoluminescence in Cd1-xMnxTe and Zn1-xMnxTe. PSS (b) 137:259CrossRefGoogle Scholar
  24. Pathan HM, Kale SS, Lokhande CD, Han SH, Joo OS (2007) Preparation and characterization of amorphous manganese sulfide thin films by SILAR method. Mat Res Bull 42:1565CrossRefGoogle Scholar
  25. Prior KA, Bradford C, David L, Tang X, Cavenett BC (2004) Growth by MBE and characterization of metastable group II sulphides. PSS (b) 241:463CrossRefGoogle Scholar
  26. Samarth N, Klosowski P, Luo H, Giebultowicz TM, Furdyna JK, Rhyne JJ, Larson BE, Otsuka N (1991) Antiferromagnetism in ZnSe/MnSe strained-layer superlattices. Phys Rev B 44:4701CrossRefGoogle Scholar
  27. Seehra MS, Groves RD (1983) Blue shifts of the optical transitions in MnO below T N. J Phys C: Solid State Phys 16:L411CrossRefGoogle Scholar
  28. Sengupta P, Batista CD, McDonald RD, Cox S, Singleton J, Huang L, Papageorgiou TP, Ignatchik O, Herrmannsdörfer T, Manson JL, Schlueter JA, Funk KA, Wosnitza J (2009) Nonmonotonic field dependence of the Néel temperature in the quasi-two-dimensional magnet [Cu (HF 2) (pyz)2] BF 4. Phys Rev B 79(6):060409CrossRefGoogle Scholar
  29. Tanabe Y, Sugano S (1954) On the absorption spectra of complex ions. J Phys Soc Jpn 9:753–766CrossRefGoogle Scholar
  30. Orendáčová A, Čižmár E, Sedláková L, Hanko J, Kajňá M, Orendáč M, Feher A, Xia JS, Yin L, Pajerowski DM, Meisel MW, Zeleňák V, Zvyagin S, Wosnitza J (2009) Interplay of frustration and magnetic field in the two-dimensional quantum antiferromagnet Cu (tn) Cl 2. Phys Rev B 80:144–418Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • M. Demper
    • 1
  • W. Heimbrodt
    • 1
  • C. Bradford
    • 2
  • K. A. Prior
    • 2
  1. 1.Department of Physics and Material Sciences CenterPhilipps-University MarburgMarburgGermany
  2. 2.School of Engineering and Physical SciencesHeriot-Watt UniversityEdinburghUK

Personalised recommendations