Journal of Nanoparticle Research

, Volume 13, Issue 6, pp 2319–2327 | Cite as

Morphology modification of TiO2 nanotubes by controlling the starting material crystallite size for chemical synthesis

  • Jang-Yul Kim
  • Tohru Sekino
  • Dong Jin Park
  • Shun-Ichiro Tanaka
Research Paper


TiO2 nanotubes (NTs) were prepared by low-temperature chemical synthesis using anatase TiO2 particles with different crystallite sizes in a NaOH solution followed by water washing and HCl neutralization. The synthesized TiO2 NTs showed diverse morphologies depending on the starting materials. The crystallite size of TiO2 raw materials increased with an increase in annealing temperature, and larger TiO2 NTs, around 31 nm in diameter, were obtained from large raw powder with a crystallite size of 117 nm. X-ray diffraction and Raman spectroscopy revealed that the obtained TiO2 NT exhibited lower crystallinity; however, Raman vibration seems to be more likely than a rutile structure.


TiO2 nanotube Low-temperature chemical synthesis Crystallinity Morphology 



This study was supported by Global COE (Center of Excellence) Program, “Materials Integration (International Center of Education and Research), Tohoku University,” MEXT (Ministry of Education, Culture, Sports, Science and Technology), Japan.


  1. Bavykin DV, Friedrich JM, Lapkin AA, Walsh FC (2006) Stability of aqueous suspensions of titanate nanotubes. Chem Mater 18(5):1124–1129. doi: 10.1021/cm0521875 CrossRefGoogle Scholar
  2. Betsch RJ, Park HL, White WB (1991) Raman spectra of stoichiometric and defect rutile. Mater Res Bull 26(7):613–622. doi: 10.1016/0025-5408(91)90104-T CrossRefGoogle Scholar
  3. Beydoun D, Amal R, Low G, McEvoy S (1999) Role of nanoparticles in photocatalysis. J Nanopart Res 1(4):439–458. doi: 10.1023/A:1010044830871 CrossRefGoogle Scholar
  4. Bwana NN (2009) Comparison of the performances of dye-sensitized solar cells based on different TiO2 electrode nanostructures. J Nanopart Res 11(8):1917–1923. doi: 10.1007/s11051-008-9545-2 CrossRefGoogle Scholar
  5. Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32(1–2):33–177. doi: 10.1016/j.progsolidstchem.2004.08.001 CrossRefGoogle Scholar
  6. Cullity BD (1978) Elements of X-ray diffraction. Addison-Wesley, ReadingGoogle Scholar
  7. Djaoued Y, Bruning R, Bersani D, Lottici PP, Badilescu S (2004) Sol-gel nanocrystalline brookite-rich titania films. Mater Lett 58(21):2618–2622. doi: 10.1016/j.matlet.2004.03.034 CrossRefGoogle Scholar
  8. Du GH, Chen Q, Che RC, Yuan ZY, Peng LM (2001) Preparation and structure analysis of titanium oxide nanotubes. Appl Phys Lett 79(22):3702–3704. doi: 10.1063/1.1423403 CrossRefGoogle Scholar
  9. Fang CS, Chen YW (2003) Preparation of titania particles by thermal hydrolysis of TiCl4 in n-propanol solution. Mater Chem Phys 78(3):739–745. doi: 10.1016/S0254-0584(02)00416-9 CrossRefGoogle Scholar
  10. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38. doi: 10.1038/238037a0 CrossRefGoogle Scholar
  11. Ghicov A, Tsuchiya H, Macak JM, Schmuki P (2005) Titanium oxide nanotubes prepared in phosphate electrolytes. Electrochem Commun 7(5):505–509. doi: 10.1016/j.elecom.2005.03.007 CrossRefGoogle Scholar
  12. Gong D, Grimes CA, Varghese OK, Hu W, Singh RS, Chen Z, Dickey EC (2001) Titanium oxide nanotube arrays prepared by anodic oxidation. J Mater Res 16(2):3331–3334. doi: 10.1557/JMR.2001.0457 CrossRefGoogle Scholar
  13. Grant CD, Schwartzberg AM, Smestad GP, Kowalik J, Tolbert LM, Zhang JZ (2002) Characterization of nanocrystalline and thin film TiO2 solar cells with poly(3-undecyl-2,2′-bithiophene) as a sensitizer and hole conductor. J Electroanal Chem 522(1):40–48. doi: 10.1016/S0022-0728(01)00715-X CrossRefGoogle Scholar
  14. Grätzel M, O’Regan B (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740. doi: 10.1038/353737a0 CrossRefGoogle Scholar
  15. Hasegawa S, Sasaki Y, Matsuhara S (1993) Oxygen-sensing factor of TiO2 doped with metal ions. Sens Actuators B 13–14:509–510. doi: 10.1016/0925-4005(93)85068-L CrossRefGoogle Scholar
  16. Hodos M, Horváth E, Haspel H, Kukovecz A, Kónya Z, Kiricsi I (2004) Photosensitization of ion-exchangeable titanate nanotubes by CdS nanoparticles. Chem Phys Lett 399(4–6):512–515. doi: 10.1016/j.cplett.2004.10.064 CrossRefGoogle Scholar
  17. Hoyer P (1996) Formation of a titanium dioxide nanotube array. Langmuir 12(6):1411–1413. doi: 10.1021/la9507803 CrossRefGoogle Scholar
  18. Imai H, Takei Y, Shimizu K, Matsuda M, Hirashima H (1999) Direct preparation of anatase TiO2 nanotubes in porous alumina membranes. J Mater Chem 9(12):2971–2972. doi: 10.1039/a906005g CrossRefGoogle Scholar
  19. Jung JH, Kobayashi H, van Bommel KJC, Shinkai S, Shimizu T (2002) Creation of novel helical ribbon and double-layered nanotube TiO2 structures using an organogel template. Chem Mater 14(4):1445–1447. doi: 10.1021/cm011625e CrossRefGoogle Scholar
  20. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1998) Formation of titanium oxide nanotube. Langmuir 14(12):3160–3163. doi: 10.1021/la9713816 CrossRefGoogle Scholar
  21. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1999) Titania nanotubes prepared by chemical processing. Adv Mater 11(15):1307–1311. doi: 0935-9648/99/1510-1308 CrossRefGoogle Scholar
  22. Kato S, Masuo F (1964) Studies on the oxidation reaction using titanium oxide as a photocatalyst (I): liquid phase oxidation of tetralin by titanium oxide photocatalyst. Kogyo Kagaku Zasshi 67(8):1136–1140 (in Japanese)Google Scholar
  23. Kim JY, Kim SK, Paik U, Katoh T, Park JK (2002) Effect of crystallinity of ceria particles on the PETEOS removal rate in chemical mechanical polishing for shallow trench isolation. JKPS 41(4):413–416. doi: 10.3938/jkps.41.413 Google Scholar
  24. Kolen’ko YuV, Garshev AV, Churagulov BR, Boujday S, Portes P, Colbeau-Justin C (2005) Photocatalytic activity of sol-gel derived titania converted into nanocrystalline powders by supercritical drying. J Photochem Photobiol A Chem 172(1):19–26. doi: 10.1016/j.jphotochem.2004.11.004 CrossRefGoogle Scholar
  25. Kukovecz A, Hodos M, Kónya Z, Kiricsi I (2005) Complex-assisted one-step synthesis of ion-exchangeable titanate nanotubes decorated with CdS nanoparticles. Chem Phys Lett 411(4–6):445–449. doi: 10.1016/j.cplett.2005.06.073 CrossRefGoogle Scholar
  26. Lee JH, Leu IC, Hsu MC, Chung YW, Hon MH (2005) Fabrication of aligned TiO2 one-dimensional nanostructured arrays using a one-step templating solution approach. J Phys Chem B 109(27):13056–13059. doi: 10.1021/jp052203l CrossRefGoogle Scholar
  27. Lin YH, Cai J, Li M, Nan CW, He J (2008) Grain boundary behavior in varistor-capacitor TiO2-rich CaCu3Ti4O12 ceramics. J Appl Phys 103(7):074111-1–074111-5. doi: 10.1063/1.2902402 Google Scholar
  28. Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95(3):735–758. doi: 10.1021/cr00035a013 CrossRefGoogle Scholar
  29. Ma R, Bando Y, Sasaki T (2004) Directly rolling nanosheets into nanotubes. J Phys Chem B 108(7):2115–2119. doi: 10.1021/jp037200s CrossRefGoogle Scholar
  30. Masuda H, Nishio K, Baba N (1992) Fabrication of porous TiO2 films using two-step replication of microstructure of anodic alumina. Jpn J Appl Phys, Part 2 31(12B):L1775–L1777. doi: 10.1143/JJAP.31.L1775 CrossRefGoogle Scholar
  31. Menzel R, Peiró AM, Durrant JR, Shaffer MSP (2006) Impact of hydrothermal processing conditions on high aspect ratio titanate nanostructures. Chem Mater 18(25):6059–6068. doi: 10.1021/cm061721l CrossRefGoogle Scholar
  32. Miyaji F, Yoko T, Kozuka H, Sakka S (1991) Structure of Na2O·2TiO2 glass. J Mater Sci 26(1):248–252. doi: 10.1007/BF00576059 CrossRefGoogle Scholar
  33. O’Regan B, Moser J, Anderson M, Grätzel M (1990) Vectorial electron injection into transparent semiconductor membranes and electric field effects on the dynamics of light-induced charge separation. J Phys Chem 94(24):8720–8726. doi: 10.1021/j100387a017 CrossRefGoogle Scholar
  34. Ohsaka T, Izumi F, Fujiki Y (1978) Raman spectrum of anatase, TiO2. J Raman Spectrosc 7(6):321–324. doi: 10.1002/jrs.1250070606 CrossRefGoogle Scholar
  35. Ovenstone J, Yanagisawa K (1999) Effect of hydrothermal treatment of amorphous titania on the phase change from anatase to rutile during calcination. Chem Mater 11(10):2770–2774. doi: 10.1021/cm990172z CrossRefGoogle Scholar
  36. Porto SPS, Fleury PA, Damen TC (1967) Raman spectra of TiO2, MgF2, ZnF2, FeF2, and MnF2. Phys Rev 154(2):522–526. doi: 10.1103/PhysRev.154.522 CrossRefGoogle Scholar
  37. Ruiz AM, Sakai G, Cornet A, Shimanoe K, Morante JR, Yamazoe N (2004) Microstructure control of thermally stable TiO2 obtained by hydrothermal process for gas sensors. Sens Actuators B 103:312–317. doi: 10.1016/j.snb.2004.04.061 CrossRefGoogle Scholar
  38. Saponjic ZV, Dimitrijevic NM, Tiede DM, Goshe AJ, Zuo X, Chen LX, Barnard AS, Zapol P, Curtiss L, Rajh T (2005) Shaping nanometer-scale architecture through surface chemistry. Adv Mater 17(8):965–971. doi: 10.1002/adma.200401041 CrossRefGoogle Scholar
  39. Satyanarayana Kuchibhatla VNT, Karakoti AS, Debasis B, Seal S (2007) One dimensional nanostructured materials. Prog Mater Sci 52(5):699–913. doi: 10.1016/j.pmatsci.2006.08.001 CrossRefGoogle Scholar
  40. Sekino T, Okamoto T, Kasuga T, Kusunose T, Nakayama T, Niihara K (2006) Synthesis and properties of titania nanotube doped with small amount of cations. Key Eng Mater 317–318:251–254. doi: 10.4028 CrossRefGoogle Scholar
  41. Suzuki Y, Yoshikawa S (2004) Synthesis and thermal analyses of TiO2-derived nanotubes prepared by the hydrothermal method. J Mater Res 19(4):982–985. doi: 10.1557/JMR.2004.0128 CrossRefGoogle Scholar
  42. Tachikawa T, Tojo S, Fujitsuka M, Sekino T, Majima T (2006) Photoinduced charge separation in titania nanotubes. J Phys Chem B 110(29):14055–14059. doi: 10.1021/jp063800q CrossRefGoogle Scholar
  43. Tsai CC, Teng H (2004) Regulation of the physical characteristics of titania nanotube aggregates synthesized from hydrothermal treatment. Chem Mater 16(22):4352–4358. doi: 10.1021/cm049643u CrossRefGoogle Scholar
  44. Yu J, Wang B (2010) Effect of calcination temperature on morphology and photoelectrochemical properties of anodized titanium dioxide nanotube arrays. Appl Catal B 94:295–302. doi: 10.1016/j.apcatb.2009.12.003 CrossRefGoogle Scholar
  45. Yuwono AH, Xue J, Wang J, Elim HI, Ji W, Li Y, White TJ (2003) Transparent nanohybrids of nanocrystalline TiO2 in PMMA with unique nonlinear optical behavior. J Mater Chem 13:1475–1479. doi: 10.1039/b211976e CrossRefGoogle Scholar
  46. Zhang QH, Gao LA, Sun J, Zheng S (2002) Preparation of long TiO2 nanotubes from ultrafine rutile nanocrystals. Chem Lett 31:226–227. doi: 10.1246/cl.2002.226 CrossRefGoogle Scholar
  47. Zwilling V, Darque-Ceretti E, Boutry-Forveille A, David D, Perrin MY, Aucouturier M (1999) Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surf Interface Anal 27(7):629–637CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Jang-Yul Kim
    • 1
  • Tohru Sekino
    • 1
  • Dong Jin Park
    • 1
  • Shun-Ichiro Tanaka
    • 1
  1. 1.Institute of Multidisciplinary Research for Advanced MaterialsTohoku UniversitySendaiJapan

Personalised recommendations