Advertisement

Journal of Nanoparticle Research

, Volume 13, Issue 5, pp 2225–2234 | Cite as

Microwave-assisted synthesis of Zn x Cd1−x S–MWCNT heterostructures and their photocatalytic properties

  • Huaqiang Wu
  • Youzhi Yao
  • Wenting Li
  • Lulu Zhu
  • Na Ni
  • Xiaojun Zhang
Research Paper

Abstract

The multi-walled carbon nanotubes (MWCNTs) wrapped with hexagonal wurtzite Zn x Cd1−x S nanoparticles with a uniform and small diameter have been prepared to form Zn x Cd1−x S–MWCNT heterostructures by microwave-assisted route using Zn(Ac)2, Cd(NO3)2, and thioacetamide as the reactants. The heterostructures have been characterized by X-ray powder diffraction, scanning and transmission electron microscopy, high-resolution transmission electron microscopy, photoluminescence (PL) and PL excited lifetime. Despite the analogous size and configuration, the Zn x Cd1−x S–MWCNT (x = 0, 0.2, 0.5, 0.8, 1) with different Zn concentration exhibit composition-dependent absorption properties in the visible zone. The PL peak positions of Zn x Cd1−x S–MWCNT change gradually from ZnS–MWCNT to CdS–MWCNT. The Zn x Cd1−x S–MWCNT shows different photocatalytic activity towards the photodegradation of fuchsin acid under visible light illumination, photocatalytic activity of the Zn x Cd1−x S–MWCNT decreases gradually with the increase in the Zn concentration, the Zn0.2Cd0.8S–MWCNT possessed the best photocatalytic activity. After recycling thrice, the photocatalysts still have about 85% efficiency.

Keywords

ZnCdS nanoparticles Photocatalytic activity Carbon nanotubes Microwave irradiation Semiconductors 

Notes

Acknowledgments

We thank Anhui Provincial Natural Science Foundation (No. 070414179) and National Natural Science Foundation (No. 20901003) of the People’s Republic of China for financial support.

References

  1. Berson S, Bettignies RD, Bailly S, Guillerez S, Jousselme B (2007) Elaboration of P3HT/CNT/PCBM composites for organic photovoltaic cells. Adv Funct Mater 17:3363–3370. doi: 10.1002/adfm.200700438 CrossRefGoogle Scholar
  2. Biju V, Itoh T, Baba Y, Ishikawa M (2006) Quenching of photoluminescence in conjugates of quantum dots and single-walled carbon nanotube. J Phys Chem B 110:26068–26074. doi: 10.1021/jp0657890 CrossRefGoogle Scholar
  3. Chen W, Sammynaiken R, Huang YN (2000) Luminescence enhancement of ZnS:Mn nanoclusters in zeolite. J Appl Phys 88(9):5188–5193. doi: 10.1063/1.1314903 CrossRefGoogle Scholar
  4. Chen YQ, Zhang XH, Jia C, Su Y, Li Q (2009) Synthesis and characterization of ZnS, CdS, and composition-tunable ZnxCd1−xS alloyed nanocrystals via a mix-solvothermal route. J Phys Chem C 113:2263–2266. doi: 10.1021/jp8091122 CrossRefGoogle Scholar
  5. Chu SS, Yi WH, Wang SF, Li FM, Feng WK, Gong QH (2008) Steady-state and transient-state optical properties of a charge-transfer composite material MO-PPV/SWNTs. Chem Phys Lett 451:116–120. doi: 10.1016/j.cplett.2007.11.087 CrossRefGoogle Scholar
  6. Czerw C, Guo ZX, Ajayan PM, Sun YP, Carroll DL (2001) Organization of polymers onto carbon nanotubes: a route to nanoscale assembly. Nano Lett 1:423–427. doi: 10.1021/nl015548y CrossRefGoogle Scholar
  7. Dai HJ (2002) Carbon nanotubes: opportunities and challenges. Surf Sci 500:218–241. doi: S0039-6028(01)01558-8 CrossRefGoogle Scholar
  8. Hsu YJ, Lu SY, Lin YF (2005) One-step preparation of coaxial CdS-ZnS and Cd1−xZnxS-ZnS nanowires. Adv Funct Mater 15:1350–1357. doi: 10.1002/adfm.200400563 CrossRefGoogle Scholar
  9. Huang BS, Chang FY, Wey MY (2009) An efficient composite growing N-doped TiO2 on multi-walled carbon nanotubes through sol–gel process. J Nanopart Res. doi: 10.1007/s11051-009-9818-4
  10. Kang YM, Kim DH (2006) Well-aligned CdS nanorod/conjugated polymer solar cells. Sol Energy Mater Sol Cells 90:166–174. doi: 10.1016/j.solmat.2005.03.001 CrossRefGoogle Scholar
  11. Kim YT, Ohshima K, Higashimine K, Uruga T, Takata M, Suematsu H, Mitani T (2006) Fine size control of platinum on carbon nanotubes: from single atoms to clusters. Angew Chem Int Ed 45:407–411. doi: 10.1002/anie.200501792 CrossRefGoogle Scholar
  12. Kulkarni SK, Winkler U, Deshmukh N (2001) Investigations on chemically capped CdS, ZnS and ZnCdS nanoparticles. Appl Surf Sci 169–170:438–446. doi: S0169-4332(00)00700-5 CrossRefGoogle Scholar
  13. Li XK, Yuan GM, Brown A, Westwood A, Brydson R, Rand B (2006) The removal of encapsulated catalyst particles from carbon nanotubes using molten salts. Carbon 44:1699–1705. doi: 10.1016/j.carbon.2006.01.006 CrossRefGoogle Scholar
  14. Li WJ, Li DZ, Chen ZX, Huang HJ, Sun M, He YH, Fu XZ (2008) High-efficient degradation of dyes by ZnxCd1−xS solid solutions under visible light irradiation. J Phys Chem C 112:14943–14947. doi: 10.1021/jp8049075 CrossRefGoogle Scholar
  15. Liu HJ, Zhu YC (2008) Synthesis and characterization of ternary chalcogenide ZnCdS 1D nanostructures. Mater Lett 62:255–257. doi: 10.1016/j.matlet.2007.05.011 CrossRefGoogle Scholar
  16. Liu LQ, Wang TX, Li JX, Guo ZX, Dai LM, Zhang DQ, Zhu DB (2003) Self-assembly of gold nanoparticles to carbon nanotubes using a thiol-terminated pyrene as interlinker. Chem Phys Lett 367:747–752. doi: S0009-2614(02)01789-X CrossRefGoogle Scholar
  17. Maurin G, Henn F, Simon B, Colomer JF, Nagy JB (2001) Lithium doping of multiwalled carbon nanotubes produced by catalytic Decomposition. Nano Lett 1:75–79. doi: 10.1021/nl005517n CrossRefGoogle Scholar
  18. Ouyang JY, Ratcliffe CI, Kingston D, Wilkinson B, Kuijper J, Wu XH, Ripmeester JA, Yu K (2008) Gradiently alloyed ZnxCd1−xS colloidal photoluminescent quantum dots synthesized via a noninjection one-pot approach. J Phys Chem C 112:4908–4919. doi: 10.1021/jp710852q CrossRefGoogle Scholar
  19. Raymond O, Villavicencio H, Petranovskii V, Siqueiros JM (2003) Growth and characterization of ZnS and ZnCdS nanoclusters in mordenite zeolite host. Mater Sci Eng A 360:202–206. doi: 10.1016/S0921-5093(03)00463-5 CrossRefGoogle Scholar
  20. Singh K, Kumar S, Verma NK, Bhatti HS (2009) Photoluminescence properties of Eu3+-doped Cd1−xZnxS quantum dots. J Nanopart Res 11:1017–1021. doi: 10.1007/s11051-009-9586-1 CrossRefGoogle Scholar
  21. Singhal S, Chawla AK, Nagar S, Gupta HO, Chandra R (2009) Photoluminescence measurements in the phase transition region of Zn1−xCdxS films. J Nanopart Res. doi: 10.1007/s11051-009-9687-x
  22. Wageh S, Badr MH (2008) Cd1−xZnxS nanoparticles stabilized by a bifunctional organic molecule. Phys E 40:2810–2813. doi: 10.1016/j.physe.2007.12.013 CrossRefGoogle Scholar
  23. Wang W, Serp P, Kalck P, Gomes C, Faria SL (2008a) Preparation and characterization of nanostructured MWCNT-TiO2 composite materials for photocatalytic water treatment applications. Mater Res Bull 43:958–967. doi: 10.1016/j.materresbull.2007.04.032 CrossRefGoogle Scholar
  24. Wang WZ, Zhu W, Xu HL (2008b) Monodisperse, mesoporous ZnxCd1−xS nanoparticles as stable visible-light-driven photocatalysts. J Phys Chem C 112:16754–16758. doi: 10.1021/jp805359r CrossRefGoogle Scholar
  25. Woan K, Pyrgiotakis G, Sigmund W (2009) Photocatalytic carbon-nanotube–TiO2 composites. Adv Mater 21:1–7. doi: 10.1002/adma.200802738 CrossRefGoogle Scholar
  26. Wu MH, Shi WY, Liu N, Ou YS, Wu FW, Jiao Z (2008) Study of the catalytic characteristics of nanooxide decorated carbon nanotubes for waste water processing. Colloids Surf A 313–314:264–267. doi: 10.1016/j.colsurfa.2007.04.107 CrossRefGoogle Scholar
  27. Yang CC, Li S (2008) Size, dimensionality, and constituent stoichiometry dependence of bandgap energies in semiconductor quantum dots and wires. J Phys Chem C 112:2851–2856. doi: 10.1021/jp076694g CrossRefGoogle Scholar
  28. Yao WT, Yu SH, Wu QS (2007) From Mesostructured wurtzite ZnS-nanowire/amine nanocomposites to ZnS nanowires exhibiting quantum size effects: a mild-solution chemistry approach. Adv Funct Mater 17:623–631. doi: 10.1002/adfm.200600239 CrossRefGoogle Scholar
  29. Zhou Y, Ji QM, Masuda M, Kamiya S, Shimizu T (2006) Helical arrays of CdS nanoparticles tracing on a functionalized chiral template of glycolipid nanotubes. Chem Mater 18:403–406. doi: 10.1021/cm051928z CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Huaqiang Wu
    • 1
  • Youzhi Yao
    • 1
  • Wenting Li
    • 1
  • Lulu Zhu
    • 1
  • Na Ni
    • 1
  • Xiaojun Zhang
    • 1
  1. 1.Anhui Key Laboratory of Molecule-based Materials, College of Chemistry and Materials ScienceAnhui Normal UniversityWuhuPeople’s Republic of China

Personalised recommendations