Journal of Nanoparticle Research

, Volume 13, Issue 5, pp 1897–1908 | Cite as

The role of synthetic parameters in the magnetic behavior of relative large hcp Ni nanoparticles

  • A. Kotoulas
  • M. Gjoka
  • K. Simeonidis
  • I. Tsiaoussis
  • M. Angelakeris
  • O. Kalogirou
  • C. Dendrinou-Samara
Research Paper


The controllable synthesis of relatively large nickel nanoparticles via thermal decomposition of nickel acetate tetrahydrate in oleylamine in the presence of 1-adamantane carboxylic acid (ACA) and trioctylphosphine oxide (TOPO) is reported. High crystalline hcp nanoparticles of different sizes have been prepared at 290 °C, whereas at relative lower temperatures fcc are favored. The particle size was varying between 50 and 150 nm by properly adjusting the proportion of the capping ligands. TOPO-to-ACA ratio was also found to have an influence on the magnetic properties through the potential formation of a NiO shell. Pure hcp Ni nanoparticles over 50 nm in size served as models to illuminate the magnetic behavior of this metastable hexagonal Ni phase. Contrary to the net ferromagnetic characteristics of fcc Ni nanoparticles in the same size range, hexagonal structured particles exhibit superparamagnetic behavior at room temperature and a weak ferromagnetic contribution below 15 K.


Nickel nanoparticles hcp Nickel Magnetism Thermal decomposition Surfactants 


  1. Bitoh T, Ohba K, Takamatsu M, Shirane T, Chikazawa S (1995) Field-cooled and zero-field-cooled magnetization of superparamagnetic fine particles in Cu97Co3 alloy: comparison with spin-glass Au96Fe4 alloy. J Phys Soc Jpn 64:1305–1310. doi: 10.1143/JPSJ.64.1305 CrossRefGoogle Scholar
  2. Chen L, Chen J, Zhou H, Zhang D, Wan H (2007a) Synthesis of dodecanethiol monolayer-stabilized nickel nanoparticles. Mater Sci Eng A 452–453:262. doi:  10.1016/j.msea.2006.10.140
  3. Chen Y, Peng DL, Lin D, Luo X (2007b) Preparation and magnetic properties of nickel nanoparticles via the thermal decomposition of nickel organometallic precursor in alkylamines. Nanotechnology 18:505703. doi: 10.1088/0957-4484/18/50/505703 CrossRefGoogle Scholar
  4. Chen Y, Luo X, She H, Yue GH, Peng DL (2009) Size- and structure-controlled synthesis and characterization of nickel nanoparticles. J Nanosci Nanotecnol 9:5157–5163. doi: 10.1166/jnn.2009.1206 CrossRefGoogle Scholar
  5. Chinnasamy CN, Jeyadevan B, Shinoda K, Tohji K, Narayanasamy A, Sato K, Hisano S (2005) Synthesis and magnetic properties of face-centered-cubic and hexagonal-close-packed Ni nanoparticles through polyol process. J Appl Phys 97:10J309. doi: 10.1063/1.1851951 CrossRefGoogle Scholar
  6. Cordente N, Respaud M, Senocq F, Casanove MJ, Amiens C, Chaudret B (2001) Synthesis and magnetic properties of nickel nanorods. Nano Lett 1:565–568. doi: 10.1021/nl0100522 CrossRefGoogle Scholar
  7. Cordente N, Amiens C, Chaudret B, Raspaud M, Senocq F, Casanove MJ (2003) Chemisorption on nickel nanoparticles of various shapes: influence on magnetism. J Appl Phys 94:6358. doi: 10.1063/1.1621081 CrossRefGoogle Scholar
  8. Del Bianco L, Boscherini F, Tamisari M, Spizzo F, Vittori Antisari M, Piscopiello E (2008) Exchange bias and interface structure in the Ni/NiO nanogranular system. J Phys D Appl Phys 41:134008–134015. doi: 10.1088/0022-3727/41/13/134008 CrossRefGoogle Scholar
  9. Guo D, Wu C, Hu H, Wang X, Li X, Chen B (2009) Study on the enhanced cellular uptake effect of daunorubicin on leukemia cells mediated via functionalized nickel nanoparticles. Biomed Mater 4:25013–025021. doi: 10.1088/1748-6041/4/2/025013 CrossRefGoogle Scholar
  10. Han M, Liu Q, He Z, Song Y, Xu Z, Zhu J (2007) Controllable synthesis and magnetic properties of cubic and hexagonal phase nickel nanocrystals. Adv Mater 19:1096–1100. doi: 10.1002/adma.200601460 CrossRefGoogle Scholar
  11. Hou Y, Gao S (2003) Monodisperse nickel nanoparticles prepared from a monosurfactant system and their magnetic properties. J Mater Chem 13:1510. doi: 10.1039/b303226d CrossRefGoogle Scholar
  12. Hou YL, Gao S (2004) Solvothermal reduction synthesis and magnetic properties of polymer protected iron and nickel nanocrystals. J Alloys Compd 365:112. doi: 10.1016/S0925-8388(03)00651-0 CrossRefGoogle Scholar
  13. Hou Y, Kondoh H, Ohta T, Gao S (2005) Size-controlled synthesis of nickel nanoparticles. Appl Surf Sci 241:218–222. doi: 10.1016/j.apsusc.2004.09.045 CrossRefGoogle Scholar
  14. Jeon Y, Lee GH, Park J, Kim B, Chang Y (2005) Magnetic properties of monodisperse NiHx nanoparticles and comparison to those of monodisperse Ni nanoparticles. J Phys Chem B 109:12257–12260. doi: 10.1021/jp050489o CrossRefGoogle Scholar
  15. Jeon YT, Moon JY, Lee GH, Park J, Chang Y (2006) Comparison of the magnetic properties of metastable hexagonal close-packed Ni nanoparticles with those of the stable face-centered cubic Ni nanoparticles. J Phys Chem B 110:1187–1191. doi: 10.1021/jp054608b CrossRefGoogle Scholar
  16. Justin Joseyphus R, Kodama D, Matsumoto T, Sato Y, Jeyadevan B, Tohji K (2007) Role of polyol in the synthesis of Fe particles. J Magn Magn Mater 310:2393–2395. doi: 10.1016/j.jmmm.2006.10.1132 CrossRefGoogle Scholar
  17. Luo X, Chen Y, Yue GH, Peng DL, Luo X (2009) Preparation of hexagonal close-packed nickel nanoparticles via a thermal decomposition approach using nickel acetate tetrahydrate as a precursor. J Alloys Compd 476:864–868. doi: 10.1016/j.jallcom.2008.09.117 CrossRefGoogle Scholar
  18. Maksimovic GD, Vukajlovic FR (1992) Magnetic properties of hexagonal-close-packed Co and Ni. Physica B 176:227. doi: 10.1016/0921-4526(92)90010-P CrossRefGoogle Scholar
  19. Mi Y, Yuan D, Liu Y, Zhang J, Xiao Y (2005) Synthesis of hexagonal close-packed nanocrystalline nickel by a thermal reduction process. Mater Chem Phys 89:359. doi: 10.1016/j.matchemphys.2004.09.012 CrossRefGoogle Scholar
  20. Mourdikoudis S, Simeonidis K, Vitalta-Clemente A, Tuna F, Tsiaoussis I, Angelakeris M, Dendrinou-Samara C, Kalogirou O (2009) Controlling the crystal structure of Ni nanoparticles by the use of alkylamines. J Magn Magn Mater 321:2723–2728. doi: 10.1016/j.jmmm.2009.03.076 CrossRefGoogle Scholar
  21. Nozaki H, Sugiyama J, Janoschek M, Roessli B, Pomjakushin V, Keller L, Yoshida H, Hiroi Z (2008) Neutron diffraction study of layered Ni dioxides: Ag2NiO2. J Phys Condens Matter 20:104236–104239. doi: 10.1088/0953-8984/20/10/104236 CrossRefGoogle Scholar
  22. Papaconstantopoulos DA, Fry JL, Brener NE (1989) Ferromagnetism in hexagonal-close-packed elements. Phys Rev B 39:2526–2528. doi: 10.1103/PhysRevB.39.2526 CrossRefGoogle Scholar
  23. Park J, Kang E, Son SU, Park HM, Lee MK, Kim J, Kim KW, Noh HJ, Park JH, Bae CJ, Park JG, Hyeon T (2005) Monodisperse nanoparticles of Ni and NiO: synthesis, characterization, self-assembled superlattices, and catalytic applications in the Suzuki coupling reaction. Adv Mater 17:429–434. doi: 10.1002/adma.200400611 CrossRefGoogle Scholar
  24. Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71. doi: 10.1107/S0021889869006558 CrossRefGoogle Scholar
  25. Rodríguez-Carbajal J (2009) FULLPROF Program: Rietveld, profile matching & integrated intensity refinement of X-ray, Version 4.70Google Scholar
  26. Sidorov VA (1998) Differential thermal analysis of magnetic transitions at high pressure: neel temperature of NiO up to 8 GPa. Appl Phys Lett 72:2174. doi: 10.1063/1.121312 CrossRefGoogle Scholar
  27. Singla ML, Negi A, Mahajan V, Singh KC, Jain DVS (2007) Catalytic behavior of nickel nanoparticles stabilized by lower alkylammonium bromide in aqueous medium. Appl Catal Gen 323:51. doi: 10.1016/j.apcata.2007.01.047 CrossRefGoogle Scholar
  28. Tzitzios V, Basina G, Gjoka M, Alexandrakis V, Georgakilas V, Niarchos D, Boukos N, Petridis D (2006) Chemical synthesis and characterization of hcp Ni nanoparticles. Nanotechnology 17:3750–3755. doi: 10.1088/0957-4484/17/15/023 CrossRefGoogle Scholar
  29. Vergara J, Mandurga V (2002) Structure and magnetic properties of Ni films obtained by pulsed laser ablation deposition. J Mater Res 17:2099–2104. doi: 10.1557/JMR.2002.0310 CrossRefGoogle Scholar
  30. Wang H, Jiao X, Chen D (2008) Monodispersed nickel nanoparticles with tunable phase and size: synthesis, characterization, and magnetic properties. J Phys Chem C 112:18793–18797. doi: 10.1021/jp805591y Google Scholar
  31. Williamson GK, Hall WH (1953) X-ray line broadening from filed aluminum and wolfram. Acta Metall 1:22–31. doi: 10.1016/0001-6160(53)90006-6 CrossRefGoogle Scholar
  32. Winnischofer H, Rocha TCR, Nunes WC, Socolovsky LM, Knobel M, Zanchet D (2008) Chemical synthesis and structural characterization of highly disordered Ni colloidal nanoparticles. ACSnano 2:1313–1319. doi: 10.1021/nn700152w Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • A. Kotoulas
    • 1
  • M. Gjoka
    • 2
  • K. Simeonidis
    • 1
  • I. Tsiaoussis
    • 1
  • M. Angelakeris
    • 1
  • O. Kalogirou
    • 1
  • C. Dendrinou-Samara
    • 3
  1. 1.Department of PhysicsAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Institute of Materials Science, N.C.S.R. “Demokritos”AthensGreece
  3. 3.Department of ChemistryAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations