Skip to main content
Log in

The role of synthetic parameters in the magnetic behavior of relative large hcp Ni nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The controllable synthesis of relatively large nickel nanoparticles via thermal decomposition of nickel acetate tetrahydrate in oleylamine in the presence of 1-adamantane carboxylic acid (ACA) and trioctylphosphine oxide (TOPO) is reported. High crystalline hcp nanoparticles of different sizes have been prepared at 290 °C, whereas at relative lower temperatures fcc are favored. The particle size was varying between 50 and 150 nm by properly adjusting the proportion of the capping ligands. TOPO-to-ACA ratio was also found to have an influence on the magnetic properties through the potential formation of a NiO shell. Pure hcp Ni nanoparticles over 50 nm in size served as models to illuminate the magnetic behavior of this metastable hexagonal Ni phase. Contrary to the net ferromagnetic characteristics of fcc Ni nanoparticles in the same size range, hexagonal structured particles exhibit superparamagnetic behavior at room temperature and a weak ferromagnetic contribution below 15 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bitoh T, Ohba K, Takamatsu M, Shirane T, Chikazawa S (1995) Field-cooled and zero-field-cooled magnetization of superparamagnetic fine particles in Cu97Co3 alloy: comparison with spin-glass Au96Fe4 alloy. J Phys Soc Jpn 64:1305–1310. doi:10.1143/JPSJ.64.1305

    Article  CAS  Google Scholar 

  • Chen L, Chen J, Zhou H, Zhang D, Wan H (2007a) Synthesis of dodecanethiol monolayer-stabilized nickel nanoparticles. Mater Sci Eng A 452–453:262. doi: 10.1016/j.msea.2006.10.140

  • Chen Y, Peng DL, Lin D, Luo X (2007b) Preparation and magnetic properties of nickel nanoparticles via the thermal decomposition of nickel organometallic precursor in alkylamines. Nanotechnology 18:505703. doi:10.1088/0957-4484/18/50/505703

    Article  Google Scholar 

  • Chen Y, Luo X, She H, Yue GH, Peng DL (2009) Size- and structure-controlled synthesis and characterization of nickel nanoparticles. J Nanosci Nanotecnol 9:5157–5163. doi:10.1166/jnn.2009.1206

    Article  CAS  Google Scholar 

  • Chinnasamy CN, Jeyadevan B, Shinoda K, Tohji K, Narayanasamy A, Sato K, Hisano S (2005) Synthesis and magnetic properties of face-centered-cubic and hexagonal-close-packed Ni nanoparticles through polyol process. J Appl Phys 97:10J309. doi:10.1063/1.1851951

    Article  Google Scholar 

  • Cordente N, Respaud M, Senocq F, Casanove MJ, Amiens C, Chaudret B (2001) Synthesis and magnetic properties of nickel nanorods. Nano Lett 1:565–568. doi:10.1021/nl0100522

    Article  CAS  Google Scholar 

  • Cordente N, Amiens C, Chaudret B, Raspaud M, Senocq F, Casanove MJ (2003) Chemisorption on nickel nanoparticles of various shapes: influence on magnetism. J Appl Phys 94:6358. doi:10.1063/1.1621081

    Article  CAS  Google Scholar 

  • Del Bianco L, Boscherini F, Tamisari M, Spizzo F, Vittori Antisari M, Piscopiello E (2008) Exchange bias and interface structure in the Ni/NiO nanogranular system. J Phys D Appl Phys 41:134008–134015. doi:10.1088/0022-3727/41/13/134008

    Article  Google Scholar 

  • Guo D, Wu C, Hu H, Wang X, Li X, Chen B (2009) Study on the enhanced cellular uptake effect of daunorubicin on leukemia cells mediated via functionalized nickel nanoparticles. Biomed Mater 4:25013–025021. doi:10.1088/1748-6041/4/2/025013

    Article  Google Scholar 

  • Han M, Liu Q, He Z, Song Y, Xu Z, Zhu J (2007) Controllable synthesis and magnetic properties of cubic and hexagonal phase nickel nanocrystals. Adv Mater 19:1096–1100. doi:10.1002/adma.200601460

    Article  CAS  Google Scholar 

  • Hou Y, Gao S (2003) Monodisperse nickel nanoparticles prepared from a monosurfactant system and their magnetic properties. J Mater Chem 13:1510. doi:10.1039/b303226d

    Article  CAS  Google Scholar 

  • Hou YL, Gao S (2004) Solvothermal reduction synthesis and magnetic properties of polymer protected iron and nickel nanocrystals. J Alloys Compd 365:112. doi:10.1016/S0925-8388(03)00651-0

    Article  CAS  Google Scholar 

  • Hou Y, Kondoh H, Ohta T, Gao S (2005) Size-controlled synthesis of nickel nanoparticles. Appl Surf Sci 241:218–222. doi:10.1016/j.apsusc.2004.09.045

    Article  CAS  Google Scholar 

  • Jeon Y, Lee GH, Park J, Kim B, Chang Y (2005) Magnetic properties of monodisperse NiHx nanoparticles and comparison to those of monodisperse Ni nanoparticles. J Phys Chem B 109:12257–12260. doi:10.1021/jp050489o

    Article  CAS  Google Scholar 

  • Jeon YT, Moon JY, Lee GH, Park J, Chang Y (2006) Comparison of the magnetic properties of metastable hexagonal close-packed Ni nanoparticles with those of the stable face-centered cubic Ni nanoparticles. J Phys Chem B 110:1187–1191. doi:10.1021/jp054608b

    Article  CAS  Google Scholar 

  • Justin Joseyphus R, Kodama D, Matsumoto T, Sato Y, Jeyadevan B, Tohji K (2007) Role of polyol in the synthesis of Fe particles. J Magn Magn Mater 310:2393–2395. doi:10.1016/j.jmmm.2006.10.1132

    Article  Google Scholar 

  • Luo X, Chen Y, Yue GH, Peng DL, Luo X (2009) Preparation of hexagonal close-packed nickel nanoparticles via a thermal decomposition approach using nickel acetate tetrahydrate as a precursor. J Alloys Compd 476:864–868. doi:10.1016/j.jallcom.2008.09.117

    Article  CAS  Google Scholar 

  • Maksimovic GD, Vukajlovic FR (1992) Magnetic properties of hexagonal-close-packed Co and Ni. Physica B 176:227. doi:10.1016/0921-4526(92)90010-P

    Article  CAS  Google Scholar 

  • Mi Y, Yuan D, Liu Y, Zhang J, Xiao Y (2005) Synthesis of hexagonal close-packed nanocrystalline nickel by a thermal reduction process. Mater Chem Phys 89:359. doi:10.1016/j.matchemphys.2004.09.012

    Article  CAS  Google Scholar 

  • Mourdikoudis S, Simeonidis K, Vitalta-Clemente A, Tuna F, Tsiaoussis I, Angelakeris M, Dendrinou-Samara C, Kalogirou O (2009) Controlling the crystal structure of Ni nanoparticles by the use of alkylamines. J Magn Magn Mater 321:2723–2728. doi:10.1016/j.jmmm.2009.03.076

    Article  CAS  Google Scholar 

  • Nozaki H, Sugiyama J, Janoschek M, Roessli B, Pomjakushin V, Keller L, Yoshida H, Hiroi Z (2008) Neutron diffraction study of layered Ni dioxides: Ag2NiO2. J Phys Condens Matter 20:104236–104239. doi:10.1088/0953-8984/20/10/104236

    Article  Google Scholar 

  • Papaconstantopoulos DA, Fry JL, Brener NE (1989) Ferromagnetism in hexagonal-close-packed elements. Phys Rev B 39:2526–2528. doi:10.1103/PhysRevB.39.2526

    Article  CAS  Google Scholar 

  • Park J, Kang E, Son SU, Park HM, Lee MK, Kim J, Kim KW, Noh HJ, Park JH, Bae CJ, Park JG, Hyeon T (2005) Monodisperse nanoparticles of Ni and NiO: synthesis, characterization, self-assembled superlattices, and catalytic applications in the Suzuki coupling reaction. Adv Mater 17:429–434. doi:10.1002/adma.200400611

    Article  CAS  Google Scholar 

  • Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71. doi:10.1107/S0021889869006558

    Article  CAS  Google Scholar 

  • Rodríguez-Carbajal J (2009) FULLPROF Program: Rietveld, profile matching & integrated intensity refinement of X-ray, Version 4.70

  • Sidorov VA (1998) Differential thermal analysis of magnetic transitions at high pressure: neel temperature of NiO up to 8 GPa. Appl Phys Lett 72:2174. doi:10.1063/1.121312

    Article  CAS  Google Scholar 

  • Singla ML, Negi A, Mahajan V, Singh KC, Jain DVS (2007) Catalytic behavior of nickel nanoparticles stabilized by lower alkylammonium bromide in aqueous medium. Appl Catal Gen 323:51. doi:10.1016/j.apcata.2007.01.047

    Article  CAS  Google Scholar 

  • Tzitzios V, Basina G, Gjoka M, Alexandrakis V, Georgakilas V, Niarchos D, Boukos N, Petridis D (2006) Chemical synthesis and characterization of hcp Ni nanoparticles. Nanotechnology 17:3750–3755. doi:10.1088/0957-4484/17/15/023

    Article  CAS  Google Scholar 

  • Vergara J, Mandurga V (2002) Structure and magnetic properties of Ni films obtained by pulsed laser ablation deposition. J Mater Res 17:2099–2104. doi:10.1557/JMR.2002.0310

    Article  CAS  Google Scholar 

  • Wang H, Jiao X, Chen D (2008) Monodispersed nickel nanoparticles with tunable phase and size: synthesis, characterization, and magnetic properties. J Phys Chem C 112:18793–18797. doi:10.1021/jp805591y

    CAS  Google Scholar 

  • Williamson GK, Hall WH (1953) X-ray line broadening from filed aluminum and wolfram. Acta Metall 1:22–31. doi:10.1016/0001-6160(53)90006-6

    Article  CAS  Google Scholar 

  • Winnischofer H, Rocha TCR, Nunes WC, Socolovsky LM, Knobel M, Zanchet D (2008) Chemical synthesis and structural characterization of highly disordered Ni colloidal nanoparticles. ACSnano 2:1313–1319. doi:10.1021/nn700152w

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Dendrinou-Samara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotoulas, A., Gjoka, M., Simeonidis, K. et al. The role of synthetic parameters in the magnetic behavior of relative large hcp Ni nanoparticles. J Nanopart Res 13, 1897–1908 (2011). https://doi.org/10.1007/s11051-010-9941-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-9941-2

Keywords

Navigation