Journal of Nanoparticle Research

, Volume 12, Issue 8, pp 3049–3056 | Cite as

Nanoparticles of nickel oxide: growth and organization on zinc-substituted anionic clay matrix by one-pot route at room temperature

  • Gabriela Carja
  • Akira Nakajima
  • Cristian Dranca
  • Kiyoshi Okada
Research Paper


A room temperature nanocarving strategy is developed for the fabrication of nanoparticles of nickel oxide on zinc-substituted anionic clay matrix (Ni/ZnLDH). It is based on the growth and organization of nanoparticles of nickel oxide which occur during the structural reconstruction of the layered structure of the anionic clay in NiSO4 aqueous solution. No organic compounds are used during the fabrication. The described material was characterized by X-ray diffraction (XRD), IR spectroscopy (FTIR), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Results show that the nickel-clay nanoarchitecture consists of small nanoparticles of nickel oxide (average size 7 nm) deposited on the larger nanoparticles (average size 90 nm) of zinc-substituted clay. The optical properties of the new nickel-zinc formulation are studied by UV–Vis.


Nickel Nickel oxide Nanoparticles Layered double hydroxides Nanostructured ensemble Nanocomposites 



The support of the contract PNCDI NATOEPA 71-020/2007 and the Grant CNCSIS IDEI 608/2009 is gratefully acknowledged.


  1. Cai J, Kimura S, Wada M, Kuga S (2009) Nanoporous cellulose as metal nanoparticles support. Biomacromolecules 10:87–94. doi: 10.1021/bm800919e CrossRefPubMedGoogle Scholar
  2. Carja G, Kameshima Y, Okada K (2008) Nanoparticles of iron and vanadium oxides supported on iron substituted LDHs: synthesis, textural characterization and their catalytic behavior in ethylbenzene dehydrogenation. Microporous Mesoporous Mater 115:541–547. doi: 10.1016/j.micromeso.2008.02.032 CrossRefGoogle Scholar
  3. Carja G, Kameshima Y, Ciobanu G, Chiriac H, Okada K (2009a) New hybrid nanostructures based on oxacillin–hydrotalcite-like anionic clays and their textural properties. Micron 40:147–150. doi: 10.1016/j.micron.2007.12.001 CrossRefPubMedGoogle Scholar
  4. Carja G, Kameshima Y, Nakajima A, Dranca C, Okada K (2009b) Nanosized silver–anionic clay matrix as nanostructured ensembles with antimicrobial activity. Int J Antimicrob Agents 34:534–539. doi: 10.1016/j.ijantimicag.2009.08.008 CrossRefPubMedGoogle Scholar
  5. Chen Y, Peng DL, Lin D, Luo X (2007) Preparation and magnetic properties of nickel nanoparticles via the thermal decomposition of nickel organometallic precursor in alkylamines. Nanotechnology 18:505703. doi: 10.1088/0957-4484/18/50/505703 CrossRefGoogle Scholar
  6. Cordente N, Respaud M, Senocq F, Casanave MJ, Amiens C, Chaudret B (2001) Synthesis and magnetic properties of nickel nanorods. Nano Lett 1:565–568. doi: 10.1021/nl0100522 CrossRefADSGoogle Scholar
  7. Creighton JA, Eadon DG (1991) Ultraviolet-visible absorption spectra of the colloidal metallic elements. J Chem Soc, Faraday Trans 87:3881–3891. doi: 10.1039/FT9918703881 CrossRefGoogle Scholar
  8. Del Arco M, Rives V, Trujillano R, Mallet P (1996) Thermal behaviour of Zn–Cr layered double hydroxides with hydrotalcite-like structures containing carbonate or decavanadate. J Mater Chem 6:1419–1428. doi: 10.1039/JM9960601419 CrossRefGoogle Scholar
  9. Del Arco M, Carriazo D, Martın C, Perez-Grueso AM, Rives V (2005) Acid and redox properties of mixed oxides prepared by calcination of chromate-containing layered double hydroxides. J Solid State Chem 178:3571–3580. doi: 10.1016/j.jssc.2005.09.014 CrossRefADSGoogle Scholar
  10. Ely TO, Amiens C, Chaudret B, Snoeck E, Verelst M, Respaud M, Broto JM (1999) Synthesis of nickel nanoparticles. Influence of aggregation induced by modification of poly(vinylpyrrolidone) chain length on their magnetic properties. Chem Mater 11:526–529. doi: 10.1021/cm980675p CrossRefGoogle Scholar
  11. Huang S, Yang P, Cheng Z, Li C, Fan Y, Kong D, Lin J (2008) Synthesis and characterization of magnetic FexOy-SBA-15 composites with different morphologies for controlled drug release and targeting. J Phys Chem C 112:7130–7137. doi: 10.1021/jp800363s CrossRefGoogle Scholar
  12. Isobe T, Park SY, Weeks RA, Zuhr RA (1995) The optical and magnetic properties of Ni+-implanted silica. J Non-Cryst Solids 189:173–180. doi: 10.1016/0022-3093(95)00230-8 CrossRefADSGoogle Scholar
  13. Joo J, Yu T, Kim YW, Park HM, Wu F, Zhang JZ, Hyeon T (2003) Multigram scale synthesis and characterization of monodisperse tetragonal zirconia nanocrystals. J Am Chem Soc 125:6553–6557. doi: 10.1021/ja034258b CrossRefPubMedGoogle Scholar
  14. Kameshima Y, Sasaki H, Isobe T, Nakajima A, Okada K (2009) Synthesis of composites of sodium oleate/Mg–Al-ascorbic acid-layered double hydroxides for drug delivery applications. Int J Pharm 381:34–39. doi: 10.1016/j.ijpharm.2009.07.021 CrossRefPubMedGoogle Scholar
  15. Kawamura M, Sato K (2006) Magnetically separable phase-transfer catalysts. Chem Commun 2006:4718–4719. doi: 10.1039/b611906a CrossRefGoogle Scholar
  16. Kim YH, Lee DK, Cha HG, Kim CW, Kang YS (2007) Synthesis and characterization of antibacterial Ag–SiO2 nanocomposite. J Phys Chem C 111:3629–3635. doi: 10.1021/jp068302w CrossRefGoogle Scholar
  17. Lee IS, Lee N, Park JN, Kim BH, Yi YW, Kim T, Kim TK, Lee IH, Paik SR, Hyeon T (2006) Ni/NiO core/shell nanoparticles for selective binding and magnetic separation of histidine-tagged proteins. J Am Chem Soc 128:10658–10659. doi: 10.1021/ja063177n CrossRefPubMedGoogle Scholar
  18. Li D, Komarneni S (2006) Microwave-assisted polyol process for synthesis of Ni nanoparticles. J Am Ceram Soc 89:1510–1517. doi: 10.1111/j.1551-2916.2006.00925.x CrossRefGoogle Scholar
  19. Li C, Wang L, Wei M, Evans DG, Duan X (2008) Large oriented mesoporous self-supporting Ni–Al oxide films derived from layered double hydroxide precursors. J Mater Chem 18:2666–2672. doi: 10.1039/b801620h CrossRefGoogle Scholar
  20. Miyata S, Okada A (1977) Synthesis of hydrotalcite-like compounds and their physico-chemical properties—the systems Mg2+-Al3+-SO4 2− and Mg2+-Al3+-CrO4 2−. Clays Clay Miner 25:14–18. doi: 10.1346/CCMN.1977.0250103 CrossRefGoogle Scholar
  21. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin–Elmer Corporation (Physical Electronics), Eden Prairie, MN, USAGoogle Scholar
  22. Pandey B, Ghosh S, Srivastava P, Kabiraj D, Shripati T, Lalla NP (2009) Synthesis of nanodimensional ZnO and Ni-doped ZnO thin films by atom beam sputtering and study of their physical properties. Phys E 41:1164–1168. doi: 10.1016/j.physe.2009.01.016 CrossRefGoogle Scholar
  23. Park J, Kang E, Son SU, Park HM, Lee MK, Kim J, Kim KW, Noh HJ, Park JH, Bae CJ, Park JG, Hyeon T (2005) Monodisperse nanoparticles of Ni and NiO: synthesis, characterization, self-assembled superlattices, and catalytic applications in the suzuki coupling reaction. Adv Mater 17:429–434. doi: 10.1002/adma.200400611 CrossRefGoogle Scholar
  24. Park M, Choi CL, Seo YJ, Yeo SK, Choi J, Komarneni S, Lee JH (2007) Reactions of Cu2+ and Pb2+ with Mg/Al layered double hydroxide. Appl Clay Sci 37:143–148. doi: 10.1016/j.clay.2006.12.006 CrossRefGoogle Scholar
  25. Perez Ramirez J, Guido M, Kaptejin F, Moulijn J (2001) In situ investigation of the thermal decomposition of Co–Al hydrotalcite in different atmospheres. J Mater Chem 11:821–830. doi: 10.1039/b009320n CrossRefGoogle Scholar
  26. Refait P, Abdelmoula M, Simon L, Genin JM (2005) Mechanisms of formation and transformation of Ni–Fe layered double hydroxides in SO3 2− and SO4 2− containing aqueous solutions. J Phys Chem Solids 66:911–917. doi: 10.1016/j.jpcs.2004.12.003 CrossRefADSGoogle Scholar
  27. Reichle WT, Yang SY, Everhardt SD (1986) The nature of the thermal decomposition of a catalytically active anionic clay mineral. J Catal 10:352–359. doi: 10.1016/0021-9517(86)90262-9 CrossRefGoogle Scholar
  28. Richardson M, Braterman P (2009) Cation exchange by anion-exchanging clays: the effects of particle aging. J Mater Chem 19:7965–7975. doi: 10.1039/b908516e CrossRefGoogle Scholar
  29. Rives V, Kannan S (2000) Layered double hydroxides with the hydrotalcite-type structure containing Cu2+, Ni2+ and Al3+. J Mater Chem 10:489–495. doi: 10.1039/a908534c CrossRefGoogle Scholar
  30. Salavati-Niasari M (2009) Template synthesis and characterization of hexaaza nickel(II) complex nanoparticles entrapped within the zeolite-Y. Inorg Chim Acta 362:3738–3744. doi: 10.1016/j.ica.2009.04.043 CrossRefGoogle Scholar
  31. Tu C, Du J, Yao L, Yang C, Ge M, Xu C, Gao M (2009) Magnetic Ni/SiO2 composite microcapsules prepared by one-pot synthesis. J Mater Chem 19:1245–1251. doi: 10.1039/b816568h CrossRefGoogle Scholar
  32. Van de Hulst HC (1981) Light scattering by small particles. Dover Publications, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Gabriela Carja
    • 1
  • Akira Nakajima
    • 2
  • Cristian Dranca
    • 1
  • Kiyoshi Okada
    • 3
  1. 1.Department of Chemical Engineering, Faculty of Chemical Engineering and Environmental ProtectionTechnical University “Gh. Asachi” of IasiIasiRomania
  2. 2.Department of Metallurgy and Ceramics ScienceTokyo Institute of Technology 2-12-1TokyoJapan
  3. 3.Materials and Structures LaboratoryTokyo Institute of TechnologyYokohamaJapan

Personalised recommendations