Journal of Nanoparticle Research

, Volume 12, Issue 8, pp 3039–3048 | Cite as

Synthesis, structural and conductivity characterization of alginic acid–Fe3O4 nanocomposite

  • B. Unal
  • M. S. Toprak
  • Z. Durmus
  • H. Sözeri
  • A. Baykal
Research Paper


Alginic acid–Fe3O4 nanocomposite is synthesized by the precipitation of Fe3O4 in the presence of alginic acid (AA). Structural, surface, morphological, thermal and electrical transport properties of the nanocomposite were performed by XRD, FT-IR, TEM-SEM, TGA and conductivity measurements respectively. FT-IR analysis revealed that Fe3O4 NPs are strongly capped with AA and TGA analysis showed that nanocomposite have 80% of Fe3O4 content. TEM analysis of Fe3O4 NPs show an average particle size of 9.5 nm, and upon nanocomposite formation with AA these particles are observed to form aggregates of ~150 nm. The frequency-dependency of the AC conductivity show electrode polarization effect. Analysis of electrical modulus and dielectric permittivity functions suggest that ionic and polymer segmental motions are strongly coupled. DC electrical conductivity is strongly temperature dependent, and is classified into three regions over a limited temperature range of up to 100 °C.


Nanocomposite Magnetite Conductivity TEM Magnetic nanoparticles 



The authors are thankful to the Fatih University, Research Project Foundation (Contract no: P50020803-2) and Turkish Ministry of Industry and Trade (Contract no: 00185.STZ.2007-2) for financial support of this study. Authors also thank Prof. Dr. Ayhan Bozkurt for conductivity measurements. The fellowship from Knut and Alice Wallenbergs Foundation is also thankfully acknowledged (No:UAW2004.0224) by Dr. M.S. Toprak.


  1. Almond DP, Vaines B (1999) The dielectric properties of random R–C networks as an explanation of the `universal’ power law dielectric response of solids. J Phys Condens Matter 11:9081–9093. doi: 10.1088/0953-8984/11/46/310 CrossRefADSGoogle Scholar
  2. Audram RG, Huguenard AP (1981) Magnetic recording elements containing transparent recording layer. U.S. Patent 4302523: 6 pagesGoogle Scholar
  3. Bhatnagar SP, Rosensweig RE (1995) Introduction to the magnetic fluids bibliography. J Magn Magn Mater 149:198CrossRefADSGoogle Scholar
  4. Bruce IJ, Taylor J, Todd M, Davies MJ, Borioni E, Sangregorio C, Sen T (2004) Synthesis, characterisation and application of silica-magnetite nanocomposites. J Magn Magn Mater 284:145–160. doi: 10.1016/j.jmmm.2004.06.032 CrossRefADSGoogle Scholar
  5. Celik SU, Bozkurt A (2008) Preparation and proton conductivity of acid-doped 5-aminotetrazole functional poly(glycidyl methacrylate). Eur Polym J 44:213–218. doi: 10.1016/j.eurpolymj.2007.10.010 CrossRefGoogle Scholar
  6. Cheong M, Zhitomirsky I (2008) Electrodeposition of alginic acid and composite films. Colloids Surf A 328:73–78. doi: 10.1016/j.colsurfa.2008.06.019 CrossRefGoogle Scholar
  7. Coey JMD, Berkowitz AE, Balcells LI, Putris FF, Parker FT (1998) Magnetoresistance of magnetite. Appl Phys Lett 72:734–737CrossRefADSGoogle Scholar
  8. Cornell RM, Schwertmann U (1996) The iron oxides: structure, properties, reactions occurrence and uses. VCH, New York, p 28Google Scholar
  9. Durmus Z, Kavas H, Toprak MS, Baykal A, Altınçekiç TG, Aslan A, Bozkurt A, Coşgun S (2009) l-lysine coated magnetite nanoparticles: synthesis, structural and conductivity characterization. J alloys Compd 484:371–376. doi: 10.1016/j.jallcom.2009.04.103 CrossRefGoogle Scholar
  10. Gomez-Lopera S, Plaza R, Delgado AJ (2001) Synthesis and characterization of spherical magnetite/biodegradable polymer composite particles. J Colloid Interface Sci 240:40–47. doi: 10.1006/jcis.2001.7579 CrossRefPubMedGoogle Scholar
  11. Hongwei G, Keming X, Zhimou Y, Chang CK, Xu B (2005) Synthesis and cellular uptake of porphyrin decorated iron oxide nanoparticles—a potential candidate for bimodal anticancer therapy. Chem Commun 34:4270–4272. doi: 10.1039/b507779f Google Scholar
  12. Huang RYM, Pal R, Moon GY (1999) Characteristics of sodium alginate membranes for the pervaporation dehydration of ethanol–water and isopropanol–water mixtures. J Membr Sci 160:101–113CrossRefGoogle Scholar
  13. Jianqi H, Hong H, Lieping S, Gengbua G (2002) Comparison of calcium alginate film with collagen membrane for guided bone regeneration in mandibular defects in rabbits. J Oral Maxillofac Surg 60:1449–1454. doi: 10.1053/joms.2002.36108 CrossRefPubMedGoogle Scholar
  14. Juillerat-Jeanneret L, Schmitt F (2007) Chemical modification of therapeutic drugs or drug vector systems to achieve targeted therapy: looking for the grail. Res Rev 27:574–590. doi: 10.1002/med.20086 CrossRefGoogle Scholar
  15. Kavas H, Durmus Z, Baykal A, Aslan A, Bozkurt A, Toprak MS (2010) Synthesis and conductivity evaluation of PVTri–Fe3O4 nanocomposite. J Noncryst Solids 356:484–486. doi: 10.1016/j.jnoncrysol.2009.12.022 CrossRefADSGoogle Scholar
  16. Kim DK, Zhang Y, Kehr J, Klasson T, Bjelke B, Muhammed M (2001) Characterization and MRI studyof surfactant-coated superparamagnetic nanoparticles administered into the rat brain. J Magn Magn Mater 225:256–261CrossRefADSGoogle Scholar
  17. Koseoglu Y, Kavas H, Aktas B (2006) Surface effects on magnetic properties of superparamagnetic magnetite nanoparticles. Phys Stat Sol A 203(7):1595–1598. doi: 10.1002/pssa.200563104 CrossRefADSGoogle Scholar
  18. Kreuter JJ (1991) Nanoparticle-based dmg delivery systems. J.Control Release 16:169–176CrossRefGoogle Scholar
  19. Leroux F, Gachon J, Besse J (2004) Biopolymer immobilization during the crystalline growth of layered double hydroxide. J Solid State Chem 177:245–250. doi: 10.1016/j.jssc.2003.08.013 CrossRefADSGoogle Scholar
  20. Li G, Jiang Y, Huang K, Ding P, Chen J (2008) Preparation and properties of magnetic Fe3O4–chitosan nanoparticles. J Alloys Compd 466:451–546. doi: 10.1016/j.jallcom.2007.11.100 CrossRefGoogle Scholar
  21. Liang WJ, Bockrath M, Bozovic D, Hafner JH, Tinkham M, Park H (2001) Fabry-Perot interference in a nanotube electron waveguide. Nature 411:665–669. doi: 10.1038/35079517 CrossRefADSPubMedGoogle Scholar
  22. Marchessault RH, Richard S, Rioux P (1992) In situ synthesis of ferrites in lignocellulosics. Carbohydr Res 224:133–139CrossRefGoogle Scholar
  23. McMichael RD, Shull RD, Swartzendruber LJ, Bennett LH, Watson RE (1992) Magnetocaloric effect in superparamagnets. J Magn Magn Mater 111:29–33CrossRefADSGoogle Scholar
  24. Mikhaylova M, Kim DK, Berry CC, Zagorodni A, Toprak MS, Curtis ASG, Muhammed MBSA (2004) Immobilization on amine-functionalized superparamagnetic iron oxide nanoparticles. Chem Mater 16:2344–2354. doi: 10.1021/cm0348904 CrossRefGoogle Scholar
  25. Mura CV, Becker MI, Orellana A, Wolff D (2002) Immunopurification of golgi vesicles by magnetic sorting. J Immunol Methods 260:263–271CrossRefPubMedGoogle Scholar
  26. Nyquist RA, Kagel RO (1971) Infrared spectra of inorganic compounds. Academic Press, New YorkGoogle Scholar
  27. Özkaya T (2008) Synthesis and magnetic characterization of magnetic nanoparticles. Master Thesis, Fatih University, IstanbulGoogle Scholar
  28. Özkaya T, Toprak MS, Baykal A, Kavas H, Köseoğlu Y, Aktaş B (2009) Synthesis of Fe3O4 nanoparticles at 100°C and its magnetic characterization. J Alloys Compd 472:18–23. doi: 10.1016/j.jallcom.2008.04.101 CrossRefGoogle Scholar
  29. Panteny S, Stevens R, Bowen CR (2005) The frequency dependent permittivity and AC conductivity of random electrical networks. Ferroelectric 319:199–208. doi: 10.1088/0953-8984/11/46/310 CrossRefGoogle Scholar
  30. Pielaszek R (2003) Analytical expression for diffraction line profile for polydispersive powders. In: Applied crystallography proceedings of the XIX Conference, Krakow, Poland, p 43 Google Scholar
  31. Pope NM, Alsop RC, Chang YA, Sonith AK (1994) Evaluation of magnetic alginate beads as a solid support for positive selection of CD34+ cells. J Biomed Mater Res 28:449–457. doi: 10.1002/jbm.820280407 CrossRefPubMedGoogle Scholar
  32. Portet D, Denizot B, Rump E, Lejeune J, Jallet P (2001) Nonpolymeric coatings of ıron oxide colloids for biological use as magnetic resonance ımaging contrast agents. J Colloid Interface Sci 238:37–42CrossRefPubMedGoogle Scholar
  33. Pradhan DK, Choudhary RNP, Samantaray BK (2008) Studies of dielectric relaxation and AC conductivity behavior of plasticized polymer nanocomposite electrolytes. Int J Electrochem Sci 3:597–608Google Scholar
  34. Roger J, Pons J, Massart R, Halbreich A, Bacri J (1999) Some biomedical applications of ferrofluids. J Eur Phys J Appl Phys 5:321–325. doi: 10.1051/epjap:1999144 CrossRefADSGoogle Scholar
  35. Rosensweig RE (1985) Ferrohydrodynamics. MIT Press, CambridgeGoogle Scholar
  36. Si SF, Li CH, Wang X, Yu D, Peng Q, Li YD (2005) Magnetic monodisperse Fe3O4 nanoparticles. Cryst Growth Design 5:391–393. doi: 10.1021/cg0497905 CrossRefGoogle Scholar
  37. Soeya S, Hayakawa J, Takahashi H, Ito K, Yamamoto C, Kida A, Asano H, Matsui M (2002) Development of half-metallic ultrathin Fe3O4 films for spin-transport devices. Appl Phys Lett 80:823–829. doi: 10.1063/1.1446995 CrossRefADSGoogle Scholar
  38. Sun SH, Zeng H (2004) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124:8204–8205. doi: 10.1021/ja026501x CrossRefGoogle Scholar
  39. Suzuki Y, Nishimura Y, Tanihara M, Suzuki K, Nakamura T, Shimizu Y, Yamawaki Y, Kakimaru Y (1998) Evaluation of a novel alginate gel dressing: Cytotoxicity to fibroblasts in vitro and foreign-body reaction in pig skin in vivo. J Biomed Mater Res 39:317–322CrossRefPubMedGoogle Scholar
  40. Suzuki K, Suzuki Y, Tanihara M, Ohnishi K, Hashimoto T, Endo K, Nishimura Y (2000) Reconstruction of rat peripheral nerve gap without sutures using freeze-dried alginate gel. J Biomed Mater Res 49:528–533CrossRefPubMedGoogle Scholar
  41. Tang NJ, Zhong W, Jiang HY, Wu XL, Liu W, Du YW (2004) Nanostructured magnetite (Fe3O4) thin films prepared by sol–gel method. J Magn Magn Mater 282:92–95. doi: 10.1016/j.jmmm.2004.04.022 CrossRefADSGoogle Scholar
  42. Toprak MS, McKenna BJ, Waite H, Stucky GD (2007) Control of size and permeability of nanocomposite microspheres. Chem Mater 19(17):4263–4269. doi: 10.1021/cm071215b CrossRefGoogle Scholar
  43. Torchilin VP (2000) Drug targeting. Eur J Pharm Sci 11:S81–S91CrossRefPubMedGoogle Scholar
  44. Wei S, Zhu Y, Zhang Y, Xu J (2007) Preparation and characterization of hyperbranched aromatic polyamides/Fe3O4 magnetic nanocomposite. React Funct Polym 66:1272–1277. doi: 10.1016/j.reactfunctpolym.2006.03.008 CrossRefGoogle Scholar
  45. Wejrzanowski T, Pielaszek R, Opalińska A, Matysiak H, Lojkowski W, Kurzydlowski KJ (2006) Quantitative methods for nanopowders characterization. Appl Surf Sci 253:204–208. doi: 10.1016/j.apsusc.2006.05.089 CrossRefADSGoogle Scholar
  46. Wunderbaldinger P, Josephson L, Weissleder R (2002) Tat peptide directs enhanced clearance and hepatic permeability of magnetic nanoparticles. Bioconjug Chem 13:264–268. doi: 10.1021/bc015563u CrossRefPubMedGoogle Scholar
  47. Yapar E, Kayahan SK, Bozkurt A, Toppare L (2009) Immobilizing cholesterol oxidase in chitosan–alginic acid network. Carbohydr Polym 76:430–436. doi: 10.1016/j.carbpol.2008.11.001 CrossRefGoogle Scholar
  48. Ziolo RF (1984) Developer composition containing superparamagnetic polymers. U.S. Patent 4474866, 4 ppGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • B. Unal
    • 1
  • M. S. Toprak
    • 2
  • Z. Durmus
    • 3
  • H. Sözeri
    • 4
  • A. Baykal
    • 3
  1. 1.Department of PhysicsFatih UniversityIstanbulTurkey
  2. 2.Functional Materials DivisionRoyal Institute of Technology—KTHStockholmSweden
  3. 3.Department of ChemistryFatih UniversityIstanbulTurkey
  4. 4.TUBITAK-UME, National Metrology InstituteGebze-KocaeliTurkey

Personalised recommendations