Skip to main content
Log in

Synthesis, structural and conductivity characterization of alginic acid–Fe3O4 nanocomposite

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Alginic acid–Fe3O4 nanocomposite is synthesized by the precipitation of Fe3O4 in the presence of alginic acid (AA). Structural, surface, morphological, thermal and electrical transport properties of the nanocomposite were performed by XRD, FT-IR, TEM-SEM, TGA and conductivity measurements respectively. FT-IR analysis revealed that Fe3O4 NPs are strongly capped with AA and TGA analysis showed that nanocomposite have 80% of Fe3O4 content. TEM analysis of Fe3O4 NPs show an average particle size of 9.5 nm, and upon nanocomposite formation with AA these particles are observed to form aggregates of ~150 nm. The frequency-dependency of the AC conductivity show electrode polarization effect. Analysis of electrical modulus and dielectric permittivity functions suggest that ionic and polymer segmental motions are strongly coupled. DC electrical conductivity is strongly temperature dependent, and is classified into three regions over a limited temperature range of up to 100 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Almond DP, Vaines B (1999) The dielectric properties of random R–C networks as an explanation of the `universal’ power law dielectric response of solids. J Phys Condens Matter 11:9081–9093. doi:10.1088/0953-8984/11/46/310

    Article  CAS  ADS  Google Scholar 

  • Audram RG, Huguenard AP (1981) Magnetic recording elements containing transparent recording layer. U.S. Patent 4302523: 6 pages

  • Bhatnagar SP, Rosensweig RE (1995) Introduction to the magnetic fluids bibliography. J Magn Magn Mater 149:198

    Article  CAS  ADS  Google Scholar 

  • Bruce IJ, Taylor J, Todd M, Davies MJ, Borioni E, Sangregorio C, Sen T (2004) Synthesis, characterisation and application of silica-magnetite nanocomposites. J Magn Magn Mater 284:145–160. doi:10.1016/j.jmmm.2004.06.032

    Article  CAS  ADS  Google Scholar 

  • Celik SU, Bozkurt A (2008) Preparation and proton conductivity of acid-doped 5-aminotetrazole functional poly(glycidyl methacrylate). Eur Polym J 44:213–218. doi:10.1016/j.eurpolymj.2007.10.010

    Article  CAS  Google Scholar 

  • Cheong M, Zhitomirsky I (2008) Electrodeposition of alginic acid and composite films. Colloids Surf A 328:73–78. doi:10.1016/j.colsurfa.2008.06.019

    Article  CAS  Google Scholar 

  • Coey JMD, Berkowitz AE, Balcells LI, Putris FF, Parker FT (1998) Magnetoresistance of magnetite. Appl Phys Lett 72:734–737

    Article  CAS  ADS  Google Scholar 

  • Cornell RM, Schwertmann U (1996) The iron oxides: structure, properties, reactions occurrence and uses. VCH, New York, p 28

    Google Scholar 

  • Durmus Z, Kavas H, Toprak MS, Baykal A, Altınçekiç TG, Aslan A, Bozkurt A, Coşgun S (2009) l-lysine coated magnetite nanoparticles: synthesis, structural and conductivity characterization. J alloys Compd 484:371–376. doi:10.1016/j.jallcom.2009.04.103

    Article  CAS  Google Scholar 

  • Gomez-Lopera S, Plaza R, Delgado AJ (2001) Synthesis and characterization of spherical magnetite/biodegradable polymer composite particles. J Colloid Interface Sci 240:40–47. doi:10.1006/jcis.2001.7579

    Article  CAS  PubMed  Google Scholar 

  • Hongwei G, Keming X, Zhimou Y, Chang CK, Xu B (2005) Synthesis and cellular uptake of porphyrin decorated iron oxide nanoparticles—a potential candidate for bimodal anticancer therapy. Chem Commun 34:4270–4272. doi:10.1039/b507779f

    Google Scholar 

  • Huang RYM, Pal R, Moon GY (1999) Characteristics of sodium alginate membranes for the pervaporation dehydration of ethanol–water and isopropanol–water mixtures. J Membr Sci 160:101–113

    Article  CAS  Google Scholar 

  • Jianqi H, Hong H, Lieping S, Gengbua G (2002) Comparison of calcium alginate film with collagen membrane for guided bone regeneration in mandibular defects in rabbits. J Oral Maxillofac Surg 60:1449–1454. doi:10.1053/joms.2002.36108

    Article  PubMed  Google Scholar 

  • Juillerat-Jeanneret L, Schmitt F (2007) Chemical modification of therapeutic drugs or drug vector systems to achieve targeted therapy: looking for the grail. Res Rev 27:574–590. doi:10.1002/med.20086

    Article  CAS  Google Scholar 

  • Kavas H, Durmus Z, Baykal A, Aslan A, Bozkurt A, Toprak MS (2010) Synthesis and conductivity evaluation of PVTri–Fe3O4 nanocomposite. J Noncryst Solids 356:484–486. doi:10.1016/j.jnoncrysol.2009.12.022

    Article  CAS  ADS  Google Scholar 

  • Kim DK, Zhang Y, Kehr J, Klasson T, Bjelke B, Muhammed M (2001) Characterization and MRI studyof surfactant-coated superparamagnetic nanoparticles administered into the rat brain. J Magn Magn Mater 225:256–261

    Article  CAS  ADS  Google Scholar 

  • Koseoglu Y, Kavas H, Aktas B (2006) Surface effects on magnetic properties of superparamagnetic magnetite nanoparticles. Phys Stat Sol A 203(7):1595–1598. doi:10.1002/pssa.200563104

    Article  CAS  ADS  Google Scholar 

  • Kreuter JJ (1991) Nanoparticle-based dmg delivery systems. J.Control Release 16:169–176

    Article  CAS  Google Scholar 

  • Leroux F, Gachon J, Besse J (2004) Biopolymer immobilization during the crystalline growth of layered double hydroxide. J Solid State Chem 177:245–250. doi:10.1016/j.jssc.2003.08.013

    Article  CAS  ADS  Google Scholar 

  • Li G, Jiang Y, Huang K, Ding P, Chen J (2008) Preparation and properties of magnetic Fe3O4–chitosan nanoparticles. J Alloys Compd 466:451–546. doi:10.1016/j.jallcom.2007.11.100

    Article  CAS  Google Scholar 

  • Liang WJ, Bockrath M, Bozovic D, Hafner JH, Tinkham M, Park H (2001) Fabry-Perot interference in a nanotube electron waveguide. Nature 411:665–669. doi:10.1038/35079517

    Article  CAS  ADS  PubMed  Google Scholar 

  • Marchessault RH, Richard S, Rioux P (1992) In situ synthesis of ferrites in lignocellulosics. Carbohydr Res 224:133–139

    Article  CAS  Google Scholar 

  • McMichael RD, Shull RD, Swartzendruber LJ, Bennett LH, Watson RE (1992) Magnetocaloric effect in superparamagnets. J Magn Magn Mater 111:29–33

    Article  CAS  ADS  Google Scholar 

  • Mikhaylova M, Kim DK, Berry CC, Zagorodni A, Toprak MS, Curtis ASG, Muhammed MBSA (2004) Immobilization on amine-functionalized superparamagnetic iron oxide nanoparticles. Chem Mater 16:2344–2354. doi:10.1021/cm0348904

    Article  CAS  Google Scholar 

  • Mura CV, Becker MI, Orellana A, Wolff D (2002) Immunopurification of golgi vesicles by magnetic sorting. J Immunol Methods 260:263–271

    Article  CAS  PubMed  Google Scholar 

  • Nyquist RA, Kagel RO (1971) Infrared spectra of inorganic compounds. Academic Press, New York

    Google Scholar 

  • Özkaya T (2008) Synthesis and magnetic characterization of magnetic nanoparticles. Master Thesis, Fatih University, Istanbul

  • Özkaya T, Toprak MS, Baykal A, Kavas H, Köseoğlu Y, Aktaş B (2009) Synthesis of Fe3O4 nanoparticles at 100°C and its magnetic characterization. J Alloys Compd 472:18–23. doi:10.1016/j.jallcom.2008.04.101

    Article  Google Scholar 

  • Panteny S, Stevens R, Bowen CR (2005) The frequency dependent permittivity and AC conductivity of random electrical networks. Ferroelectric 319:199–208. doi:10.1088/0953-8984/11/46/310

    Article  Google Scholar 

  • Pielaszek R (2003) Analytical expression for diffraction line profile for polydispersive powders. In: Applied crystallography proceedings of the XIX Conference, Krakow, Poland, p 43

  • Pope NM, Alsop RC, Chang YA, Sonith AK (1994) Evaluation of magnetic alginate beads as a solid support for positive selection of CD34+ cells. J Biomed Mater Res 28:449–457. doi:10.1002/jbm.820280407

    Article  CAS  PubMed  Google Scholar 

  • Portet D, Denizot B, Rump E, Lejeune J, Jallet P (2001) Nonpolymeric coatings of ıron oxide colloids for biological use as magnetic resonance ımaging contrast agents. J Colloid Interface Sci 238:37–42

    Article  CAS  PubMed  Google Scholar 

  • Pradhan DK, Choudhary RNP, Samantaray BK (2008) Studies of dielectric relaxation and AC conductivity behavior of plasticized polymer nanocomposite electrolytes. Int J Electrochem Sci 3:597–608

    CAS  Google Scholar 

  • Roger J, Pons J, Massart R, Halbreich A, Bacri J (1999) Some biomedical applications of ferrofluids. J Eur Phys J Appl Phys 5:321–325. doi:10.1051/epjap:1999144

    Article  CAS  ADS  Google Scholar 

  • Rosensweig RE (1985) Ferrohydrodynamics. MIT Press, Cambridge

    Google Scholar 

  • Si SF, Li CH, Wang X, Yu D, Peng Q, Li YD (2005) Magnetic monodisperse Fe3O4 nanoparticles. Cryst Growth Design 5:391–393. doi:10.1021/cg0497905

    Article  CAS  Google Scholar 

  • Soeya S, Hayakawa J, Takahashi H, Ito K, Yamamoto C, Kida A, Asano H, Matsui M (2002) Development of half-metallic ultrathin Fe3O4 films for spin-transport devices. Appl Phys Lett 80:823–829. doi:10.1063/1.1446995

    Article  CAS  ADS  Google Scholar 

  • Sun SH, Zeng H (2004) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124:8204–8205. doi:10.1021/ja026501x

    Article  Google Scholar 

  • Suzuki Y, Nishimura Y, Tanihara M, Suzuki K, Nakamura T, Shimizu Y, Yamawaki Y, Kakimaru Y (1998) Evaluation of a novel alginate gel dressing: Cytotoxicity to fibroblasts in vitro and foreign-body reaction in pig skin in vivo. J Biomed Mater Res 39:317–322

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Suzuki Y, Tanihara M, Ohnishi K, Hashimoto T, Endo K, Nishimura Y (2000) Reconstruction of rat peripheral nerve gap without sutures using freeze-dried alginate gel. J Biomed Mater Res 49:528–533

    Article  CAS  PubMed  Google Scholar 

  • Tang NJ, Zhong W, Jiang HY, Wu XL, Liu W, Du YW (2004) Nanostructured magnetite (Fe3O4) thin films prepared by sol–gel method. J Magn Magn Mater 282:92–95. doi:10.1016/j.jmmm.2004.04.022

    Article  CAS  ADS  Google Scholar 

  • Toprak MS, McKenna BJ, Waite H, Stucky GD (2007) Control of size and permeability of nanocomposite microspheres. Chem Mater 19(17):4263–4269. doi:10.1021/cm071215b

    Article  CAS  Google Scholar 

  • Torchilin VP (2000) Drug targeting. Eur J Pharm Sci 11:S81–S91

    Article  CAS  PubMed  Google Scholar 

  • Wei S, Zhu Y, Zhang Y, Xu J (2007) Preparation and characterization of hyperbranched aromatic polyamides/Fe3O4 magnetic nanocomposite. React Funct Polym 66:1272–1277. doi:10.1016/j.reactfunctpolym.2006.03.008

    Article  Google Scholar 

  • Wejrzanowski T, Pielaszek R, Opalińska A, Matysiak H, Lojkowski W, Kurzydlowski KJ (2006) Quantitative methods for nanopowders characterization. Appl Surf Sci 253:204–208. doi:10.1016/j.apsusc.2006.05.089

    Article  CAS  ADS  Google Scholar 

  • Wunderbaldinger P, Josephson L, Weissleder R (2002) Tat peptide directs enhanced clearance and hepatic permeability of magnetic nanoparticles. Bioconjug Chem 13:264–268. doi:10.1021/bc015563u

    Article  CAS  PubMed  Google Scholar 

  • Yapar E, Kayahan SK, Bozkurt A, Toppare L (2009) Immobilizing cholesterol oxidase in chitosan–alginic acid network. Carbohydr Polym 76:430–436. doi:10.1016/j.carbpol.2008.11.001

    Article  CAS  Google Scholar 

  • Ziolo RF (1984) Developer composition containing superparamagnetic polymers. U.S. Patent 4474866, 4 pp

Download references

Acknowledgements

The authors are thankful to the Fatih University, Research Project Foundation (Contract no: P50020803-2) and Turkish Ministry of Industry and Trade (Contract no: 00185.STZ.2007-2) for financial support of this study. Authors also thank Prof. Dr. Ayhan Bozkurt for conductivity measurements. The fellowship from Knut and Alice Wallenbergs Foundation is also thankfully acknowledged (No:UAW2004.0224) by Dr. M.S. Toprak.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Baykal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Unal, B., Toprak, M.S., Durmus, Z. et al. Synthesis, structural and conductivity characterization of alginic acid–Fe3O4 nanocomposite. J Nanopart Res 12, 3039–3048 (2010). https://doi.org/10.1007/s11051-010-9898-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-9898-1

Keywords

Navigation