Skip to main content
Log in

An equation of state for the detonation product of copper oxide/aluminum nanothermite composites

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

An equation of state (EOS) for the detonation product of the copper oxide/aluminum (CuO/Al) nanothermite composites is developed based on the Chapman–Jouguet (CJ) theory and the nanothermite detonation experiment. The EOS is implemented into a coupled computational fluid dynamics and computational solid dynamics code through the material point method for the model-based simulations of the detonation response of the CuO/Al nanothermite material placed in a small well. The simulations demonstrate the validity of the formulated EOS to catch the essential feature of the detonation response of the CuO/Al nanothermite. The EOS parameters are determined by comparing simulated and experimentally measured pressure–time histories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Apperson SJ, Bhattacharya S, Gao Y, Subramanian S, Hasan S, Hossain M, Shende RV, Redner P, Kapoor D, Nicolich S, Gangopadhyay K, Gangopadhyay S (2006) On-chip initiation and burn rate measurements of thermite energetic reactions. Mater Res Soc Symp Proc 896:0896-H03-02

    Google Scholar 

  • Apperson SJ, Shende RV, Subramanian S, Tappmeyer D, Gangopadhyay S, Chen Z, Gangopadhyay K (2007) Generation of fast propagating combustion and shock waves with copper oxide/aluminum nanothermite composites. Appl Phys Lett 91:243109

    Article  ADS  Google Scholar 

  • Apperson SJ, Bezmelnitsyn AV, Rajagopalan T, Gangopadhyay K, Gangopadhyay S, Balas WA, Anderson PE, Nicolich SM (2009) Characterization of nanothermite material for solid fuel microthruster applications. J Propuls Power 25:1086–1091

    Article  CAS  Google Scholar 

  • Bardenhagen SG, Kober EM (2004) The generalized interpolation material point method. Comput Model Eng Sci 5:477–495

    Google Scholar 

  • Blobaum KJ, Reiss ME, Plitzko Lawrence JM, Weihs TP (2002) Deposition and characterization of a self-propagating CuOx/Al thermite reaction in a multilayer foil geometry. J Appl Phys 94:2915–2922

    Article  ADS  Google Scholar 

  • Brackbill JU, Ruppel HM (1986) FLIP: a method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions. J Comput Phys 65:314–343

    Article  MATH  CAS  MathSciNet  ADS  Google Scholar 

  • Bulian CJ, Kerr TT, Pusyznski JA (2004) Ignition studies of aluminum and metal oxide nanopowders. In: Proceedings of the 31st international pyrotechnics seminar, Littleton, CO, USA, pp 327–338

  • Fickett W, Davis WC (1979) Detonation. University of California Press, Berkeley

    Google Scholar 

  • Mehendale B, Shende RV, Subramanian S, Redner P, Kapoor D, Nicolich S, Gangopadhyay S (2006) Nanoenergetic composite of mesoporous iron oxide and aluminum nanoparticles. J Energy Mater 24:341–360

    Article  CAS  Google Scholar 

  • Miziolek AW (2002) Nanoenergetics: an emerging technology area of national importance. AMPTIAC Newsl 6:43–48

    CAS  Google Scholar 

  • Pan XF, Xu A, Zhang G, Zhu J (2008) Generalized interpolation material point approach to high melting explosive with cavities under shock. J Phys D Appl Phys 41:015401

    Article  ADS  Google Scholar 

  • Perry WL, Smith BL, Bulian CJ, Busse JR, Macomber CS, Dye RC, Son SF (2004) Nano-scale tungsten oxides for metastable intermolecular composites. Propellants Explos Pyrotech 29:99–105

    Article  CAS  Google Scholar 

  • Plantier KB, Pantoya ML, Gash AE (2005) Combustion wave speeds of nanocomposites Al/Fe2O3. Combust Flame 140:299–309

    Article  CAS  Google Scholar 

  • Pusyznski JA, Bulian CJ, Swiatkiewicz JJ (2006) The effect of nanopowder attributes on reaction mechanism and ignition sentivity of nanothermites. Mater Res Soc Symp Proc 896:147–158

    Google Scholar 

  • Puszynski JA, Bulian CJ, Swiatkiewicz JJ (2007) Processing and ignition characteristics of aluminum-bismuth trioxide nanothermite system. J Propuls Power 23:698–706

    Article  CAS  Google Scholar 

  • Schoenitz M, Umbrajkar S, Dreizin EL (2007) Kinetic analysis of thermite reactions in Al–MoO3 nanocomposites. J Propuls Power 23:683–687

    Article  CAS  Google Scholar 

  • Shende R, Subramanian S, Hasan S, Apperson S, Thiruvengadathan R, Gangopadhyay K, Gangopadhyay S, Redner P, Kapoor D, Nicolich S, Balas W (2008) Nanoenergetic composites of CuO nanorods, nanowires, and Al-nanoparticles. Propellant Explos Pyrotech 33:122–130

    Article  CAS  Google Scholar 

  • Son SF, Hiskey HL, Asay BW, Busse JR, Jorgensen BS, Bockmon B, Pantoya M (2001) Reaction propagation physics of Al/MnO3 nanocomposite thermites. In: 28th International pyrotechnics seminar, Littleton, CO, USA, pp 833–842

  • Subramanian S, Hasan S, Bhattacharya S, Gao Y, Apperson S, Hossain M, Shende RV, Gangopadhyay S, Redner P, Kapoor D, Nicolich S (2006) Self-assembled ordered energetic composites of CuO nanorods and nanowells and Al nanoparticles with high burn rates. Mater Res Soc Symp Proc 896:0896-H01-05

    Google Scholar 

  • Sulsky D, Chen Z, Schreyer HL (1994) A particle method for history-dependent materials. Comput Methods Appl Mech Eng 118:179–196

    Article  MATH  MathSciNet  Google Scholar 

  • Sulsky D, Zhou SJ, Schreyer HL (1995) Application of a particle-in-cell method to solid mechanics. Comput Phys Commun 87:236–252

    Article  MATH  CAS  ADS  Google Scholar 

  • van Wingerden K, Bjerketvedt D, Bakke JR (1999) Detonations in pipes and in the open. Available at http://www.safetynet.de/Publications/articles/CMRNov99.pdf

  • Wilson DE, Kim K (2005) Combustion of consolidated and confined metastable intermolecular composites. In: 43rd AIAA Aerospace Science Meeting, Reno, NV, USA, AIAA-2005-0275

  • York AR II, Sulsky D, Schreyer HL (2000) Fluid-membrane interaction based on the material point method. Int J Numer Methods Eng 48:901–924

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This study was partially supported by the US Army ARDEC and the US National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gan, Y., Chen, Z., Gangopadhyay, K. et al. An equation of state for the detonation product of copper oxide/aluminum nanothermite composites. J Nanopart Res 12, 719–726 (2010). https://doi.org/10.1007/s11051-010-9872-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-9872-y

Keywords

Navigation