Journal of Nanoparticle Research

, Volume 12, Issue 3, pp 719–726 | Cite as

An equation of state for the detonation product of copper oxide/aluminum nanothermite composites

  • Yong Gan
  • Zhen Chen
  • K. Gangopadhyay
  • A. Bezmelnitsyn
  • S. Gangopadhyay
Research Paper


An equation of state (EOS) for the detonation product of the copper oxide/aluminum (CuO/Al) nanothermite composites is developed based on the Chapman–Jouguet (CJ) theory and the nanothermite detonation experiment. The EOS is implemented into a coupled computational fluid dynamics and computational solid dynamics code through the material point method for the model-based simulations of the detonation response of the CuO/Al nanothermite material placed in a small well. The simulations demonstrate the validity of the formulated EOS to catch the essential feature of the detonation response of the CuO/Al nanothermite. The EOS parameters are determined by comparing simulated and experimentally measured pressure–time histories.


Equation of state Nanothermite composites Detonation Material point method 



This study was partially supported by the US Army ARDEC and the US National Science Foundation.


  1. Apperson SJ, Bhattacharya S, Gao Y, Subramanian S, Hasan S, Hossain M, Shende RV, Redner P, Kapoor D, Nicolich S, Gangopadhyay K, Gangopadhyay S (2006) On-chip initiation and burn rate measurements of thermite energetic reactions. Mater Res Soc Symp Proc 896:0896-H03-02Google Scholar
  2. Apperson SJ, Shende RV, Subramanian S, Tappmeyer D, Gangopadhyay S, Chen Z, Gangopadhyay K (2007) Generation of fast propagating combustion and shock waves with copper oxide/aluminum nanothermite composites. Appl Phys Lett 91:243109CrossRefADSGoogle Scholar
  3. Apperson SJ, Bezmelnitsyn AV, Rajagopalan T, Gangopadhyay K, Gangopadhyay S, Balas WA, Anderson PE, Nicolich SM (2009) Characterization of nanothermite material for solid fuel microthruster applications. J Propuls Power 25:1086–1091CrossRefGoogle Scholar
  4. Bardenhagen SG, Kober EM (2004) The generalized interpolation material point method. Comput Model Eng Sci 5:477–495Google Scholar
  5. Blobaum KJ, Reiss ME, Plitzko Lawrence JM, Weihs TP (2002) Deposition and characterization of a self-propagating CuOx/Al thermite reaction in a multilayer foil geometry. J Appl Phys 94:2915–2922CrossRefADSGoogle Scholar
  6. Brackbill JU, Ruppel HM (1986) FLIP: a method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions. J Comput Phys 65:314–343MATHCrossRefMathSciNetADSGoogle Scholar
  7. Bulian CJ, Kerr TT, Pusyznski JA (2004) Ignition studies of aluminum and metal oxide nanopowders. In: Proceedings of the 31st international pyrotechnics seminar, Littleton, CO, USA, pp 327–338Google Scholar
  8. Fickett W, Davis WC (1979) Detonation. University of California Press, BerkeleyGoogle Scholar
  9. Mehendale B, Shende RV, Subramanian S, Redner P, Kapoor D, Nicolich S, Gangopadhyay S (2006) Nanoenergetic composite of mesoporous iron oxide and aluminum nanoparticles. J Energy Mater 24:341–360CrossRefGoogle Scholar
  10. Miziolek AW (2002) Nanoenergetics: an emerging technology area of national importance. AMPTIAC Newsl 6:43–48Google Scholar
  11. Pan XF, Xu A, Zhang G, Zhu J (2008) Generalized interpolation material point approach to high melting explosive with cavities under shock. J Phys D Appl Phys 41:015401CrossRefADSGoogle Scholar
  12. Perry WL, Smith BL, Bulian CJ, Busse JR, Macomber CS, Dye RC, Son SF (2004) Nano-scale tungsten oxides for metastable intermolecular composites. Propellants Explos Pyrotech 29:99–105CrossRefGoogle Scholar
  13. Plantier KB, Pantoya ML, Gash AE (2005) Combustion wave speeds of nanocomposites Al/Fe2O3. Combust Flame 140:299–309CrossRefGoogle Scholar
  14. Pusyznski JA, Bulian CJ, Swiatkiewicz JJ (2006) The effect of nanopowder attributes on reaction mechanism and ignition sentivity of nanothermites. Mater Res Soc Symp Proc 896:147–158Google Scholar
  15. Puszynski JA, Bulian CJ, Swiatkiewicz JJ (2007) Processing and ignition characteristics of aluminum-bismuth trioxide nanothermite system. J Propuls Power 23:698–706CrossRefGoogle Scholar
  16. Schoenitz M, Umbrajkar S, Dreizin EL (2007) Kinetic analysis of thermite reactions in Al–MoO3 nanocomposites. J Propuls Power 23:683–687CrossRefGoogle Scholar
  17. Shende R, Subramanian S, Hasan S, Apperson S, Thiruvengadathan R, Gangopadhyay K, Gangopadhyay S, Redner P, Kapoor D, Nicolich S, Balas W (2008) Nanoenergetic composites of CuO nanorods, nanowires, and Al-nanoparticles. Propellant Explos Pyrotech 33:122–130CrossRefGoogle Scholar
  18. Son SF, Hiskey HL, Asay BW, Busse JR, Jorgensen BS, Bockmon B, Pantoya M (2001) Reaction propagation physics of Al/MnO3 nanocomposite thermites. In: 28th International pyrotechnics seminar, Littleton, CO, USA, pp 833–842Google Scholar
  19. Subramanian S, Hasan S, Bhattacharya S, Gao Y, Apperson S, Hossain M, Shende RV, Gangopadhyay S, Redner P, Kapoor D, Nicolich S (2006) Self-assembled ordered energetic composites of CuO nanorods and nanowells and Al nanoparticles with high burn rates. Mater Res Soc Symp Proc 896:0896-H01-05Google Scholar
  20. Sulsky D, Chen Z, Schreyer HL (1994) A particle method for history-dependent materials. Comput Methods Appl Mech Eng 118:179–196MATHCrossRefMathSciNetGoogle Scholar
  21. Sulsky D, Zhou SJ, Schreyer HL (1995) Application of a particle-in-cell method to solid mechanics. Comput Phys Commun 87:236–252MATHCrossRefADSGoogle Scholar
  22. van Wingerden K, Bjerketvedt D, Bakke JR (1999) Detonations in pipes and in the open. Available at
  23. Wilson DE, Kim K (2005) Combustion of consolidated and confined metastable intermolecular composites. In: 43rd AIAA Aerospace Science Meeting, Reno, NV, USA, AIAA-2005-0275Google Scholar
  24. York AR II, Sulsky D, Schreyer HL (2000) Fluid-membrane interaction based on the material point method. Int J Numer Methods Eng 48:901–924MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Yong Gan
    • 1
  • Zhen Chen
    • 1
  • K. Gangopadhyay
    • 2
  • A. Bezmelnitsyn
    • 3
  • S. Gangopadhyay
    • 3
  1. 1.Department of Civil and Environmental EngineeringUniversity of MissouriColumbiaUSA
  2. 2.Nuclear Science and Engineering InstituteUniversity of MissouriColumbiaUSA
  3. 3.Department of Electrical and Computer EngineeringUniversity of MissouriColumbiaUSA

Personalised recommendations