Journal of Nanoparticle Research

, Volume 13, Issue 8, pp 3157–3165 | Cite as

Synthesis and photocatalytic activity of polyaniline–TiO2 composites with bionic nanopapilla structure

  • Jianhong Wei
  • Qi Zhang
  • Yang Liu
  • Rui Xiong
  • Chunxu Pan
  • Jing Shi
Research paper


Polyaniline (PANI)–TiO2 nanocomposites possessing both nano and microscale structures were prepared through a facile hydrothermal route in the presence of PANI. The nanopapilla particles were characterized by scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray analysis, X-ray photoelectron spectra, X-ray diffraction, FTIR spectra, UV–Vis spectroscopy, and N2 adsorption analysis, etc. The results show that the composites possess both nano and microscale structures. The TiO2 nanorods are dispersed on PANI with one end fixed to the surface. The photocatalytic properties of the powders were verified by the photodegradation of gaseous acetone under UV (λ = 254 nm) and visible-light irradiation (λ > 400 nm). In fact, the photocatalytic effects exhibited by the composite particles were superior to that of pure TiO2 and P25 samples. This excellent behavior is attributed to the structural features of PANI–TiO2 microspheres and the synergistic effect between PANI and TiO2 which facilitates a larger amount of surface active sites. This in turn causes a faster charge separation and slower charge recombination which results in a more efficient decomposition of gaseous pollutants.


Polyaniline TiO2 Nanopapilla structure Photocatalyst 



We are grateful for the financial support from the National Program on key Basic Research Project (973 Grant No. 2009CB939704 & 2009CB939705), and the National Natural Science Foundation of China (No. 10974148).

Supplementary material

11051_2010_212_MOESM1_ESM.doc (2.3 mb)
Supplementary material 1 (DOC 2314 kb)


  1. Bai XL, Xie B, Pan N, Wang XP, Wang HQ (2008) Novel three-dimensional dandelion-like TiO2 structure with high photocatalytic activity. J Solid State Chem 181:450–456CrossRefGoogle Scholar
  2. Bosc F, Ayral A, Keller N, Keller V (2007) Room temperature visible light oxidation of CO by high surface area rutile TiO2-supported metal photocatalyst. Appl Catal B Environ 69:133–137CrossRefGoogle Scholar
  3. Cheng HM, Ma JM, Zhao ZG, Qi LM (1995) Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chem Mater 7:663–671CrossRefGoogle Scholar
  4. El-Toni AM, Shu Y, Sato T (2009) Sonochemical synthesis of networked silica shell with reduced microporosity on titania nanocores for photocatalytic activity reduction. J Am Ceram Soc 92:3125–3128CrossRefGoogle Scholar
  5. Gai LG, Du GJ, Zuo ZY, Wang YM, Liu D, Liu H (2009) Controlled synthesis of hydrogen titanate-polyaniline composite nanowires and their resistance-temperature characteristics. J Phys Chem C 113:7610–7615CrossRefGoogle Scholar
  6. Gao JZ, Li SY, Yang W, Zhao GH, Bo LL, Song L (2007) Preparation and photocatalytic activity of PANI/TiO2 composite film. Rare Met 26:1–7CrossRefGoogle Scholar
  7. Han YG, Kusunose T, Sekino T (2008) One-pot preparation of core–shell structure titania/polyaniline hybrid materials: the effect of sodium dodecyl sulfate surfactant. Chem Lett 37:858–859CrossRefGoogle Scholar
  8. He YM, Sheng TL, Wu Y, Chen JS, Fu RB, Hu SM, Wu XT (2009) Visible light-induced degradation of acetone over SO4 2−/MoOx/MgF2 catalysts. J Hazard Mater 168:551–554CrossRefGoogle Scholar
  9. Hu WB, Li LP, Tong WM, Li GS (2010) Supersaturated spontaneous nucleation to TiO2 microspheres: synthesis and giant dielectric performance. Chem Commun 46:3113–3115CrossRefGoogle Scholar
  10. Jackson SD, Hargreaves JSJ (2009) Metal oxide catalysis. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  11. Kim TW, Hur SG, Hwang SJ, Park H, Choi W, Choy JH (2007) Heterostructured visible vight active photocatalyst of chromia-nanoparticle-layered titanate. Adv Funct Mater 17:307–314CrossRefGoogle Scholar
  12. Knozinger H, Kochioefl K, Turek T (2009) Heterogeneous catalysis and solid catalysts. Wiley-VCH Verlag GmbH & Co KGaA, WeinheimGoogle Scholar
  13. Lam SW, Soetanto A, Amal R (2009) Self-cleaning performance of polycarbonate surfaces coated with titania nanoparticles. J Nanopart Res 11:1971–1979CrossRefGoogle Scholar
  14. Lee SL, Scott J, Chiang K, Amal R (2009)  Nanosized metal deposits on titanium dioxide for augmenting gas-phase toluene photooxidation. J Nanopart Res 11:209–219CrossRefGoogle Scholar
  15. Li XW, Chen W, Bian CQ, He JB, Xu N, Xue G (2003) Surface modification of TiO2 nanoparticles by polyaniline. Appl Surf Sci 217:16–22CrossRefGoogle Scholar
  16. Li J, Zhu LH, Wu YH, Harima Y, Zhang AQ, Tang HQ (2006) Hybrid composites of conductive polyaniline and nanocrystalline titanium oxide prepared via self-assembling and graft polymerization. Polymer 47:7361–7367CrossRefGoogle Scholar
  17. Li XY, Wang DS, Cheng GX, Luo QZ, An J, Wang YH (2008) Preparation of polyaniline-modified TiO2 nanoparticles and their photocatalytic activity under visible light illumination. Appl Catal B Environ 81:267–273CrossRefGoogle Scholar
  18. Liu L, Zhao YP, Liu HJ, Kou HZ, Wang YQ (2006) Directed growth of TiO2 nanorods into microspheres. Nanotechnology 17:5046–5050CrossRefGoogle Scholar
  19. Liu Y, Liu CY, Wei JH, Xiong R, Pan CX, Shi J (2010) Enhanced adsorption and visible-light-induced photocatalytic activity of hydroxyapatite modified Ag–TiO2 powders. Appl Surf Sci 256:6390–6394CrossRefGoogle Scholar
  20. Luo JQ, Gao L (2009) Large-scale production of monodispersed titania microspheres by surfactant-guided self-assembly. J Alloys Compd 487:763–767CrossRefGoogle Scholar
  21. Nabid MR, Golbabaee M, Moghaddam AB, Dinarvand R, Sedghi R (2008) Polyaniline/TiO2 nanocomposite: enzymatic synthesis and electrochemical properties. Int J Electrochem Sci 3:1117–1126Google Scholar
  22. Niu ZW, Yang ZZ, Hu ZB, Lu YF, Han CC (2003) Polyaniline-silica composite conductive capsules and hollow spheres. Adv Funct Mater 13:949–954CrossRefGoogle Scholar
  23. Park H, Choi W (2006) Visible-light-sensitized production of hydrogen using perfluorosulfonate polymer-coated TiO2 nanoparticles: an alternative approach to sensitizer anchoring. Langmuir 22:2906–2911CrossRefGoogle Scholar
  24. Photong S, Boonamnuayvitaya V (2009) Preparation and characterization of amine-functionalized SiO2/TiO2 films for formaldehyde degradation. Appl Surf Sci 255:9311–9315CrossRefGoogle Scholar
  25. Shang M, Wang WZ, Sun SM, Ren J, Zhou L, Zhang L (2009) Efficient visible light-induced photocatalytic degradation of contaminant by spindle-like PANI/BiVO4. J Phys Chem C 113:20228–20233CrossRefGoogle Scholar
  26. Somani PR, Marimuthu R, Mulik UP, Sainkar SR (1999) High piezoresistivity and its origin in conducting polyaniline/TiO2 composites. Synth Met 106:45–52CrossRefGoogle Scholar
  27. Sugimoto T, Zhou X, Muramatsu A (2002) Synthesis of uniform anatase TiO2 nanoparticles by gel–sol method, 1. Solution chemistry of Ti (OH)n(4−n)+ complexes. J Colloid Interface Sci 252:339–346CrossRefGoogle Scholar
  28. Wei JH, Shi J, Liu ZY, Wang JB (2006) Polymer-assisted synthesis of BaTiO3 nanorods. J Mater Sci 41:3127–3130CrossRefGoogle Scholar
  29. Xia HS, Wang Q (2002) Ultrasonic irradiation: a novel approach to prepare conductive polyaniline nanocrystalline-titanium oxide composites. Chem Mater 14:2158–2165CrossRefGoogle Scholar
  30. Xiong SX, Wang Q, Chen YH (2007) Preparation of polyaniline/TiO2 hybrid microwires in the microchannels of a template. Mater Chem Phys 103:450–455CrossRefGoogle Scholar
  31. Xu H, Jia FL, Ai ZH, Zhang LZ (2007) A general soft interface platform for the growth and assembly of hierarchical rutile TiO2 nanorods spheres. Cryst Growth Des 7:1216–1219CrossRefGoogle Scholar
  32. Zhang LX, Liu P, Su ZX (2006) Preparation of PANI/TiO2 nanophotocatalysts and their solid-phase photocatalytic degradation. Polym Degrad Stab 91:2213–2219CrossRefGoogle Scholar
  33. Zhang H, Zong RL, Zhao JC, Zhu YF (2008) Dramatic visible photocatalytic degradation performances due to synergetic effect of TiO2 with PANI. Environ Sci Technol 42:3803–3807CrossRefGoogle Scholar
  34. Zhang W, Zou LD, Wang LZ (2009) Photocatalytic TiO2/adsorbent nanocomposites prepared via wet chemical impregnation for wastewater treatment: a review. Appl Catal A Gen 371:1–9CrossRefGoogle Scholar
  35. Zhang H, Lv XJ, Li YM, Wang Y, Li JH (2010) P25-graphene composite as a high performance photocatalyst. ACS Nano 4:380–386CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jianhong Wei
    • 1
  • Qi Zhang
    • 1
  • Yang Liu
    • 1
  • Rui Xiong
    • 1
  • Chunxu Pan
    • 1
  • Jing Shi
    • 1
  1. 1.Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and TechnologyWuhan UniversityWuhanChina

Personalised recommendations