Skip to main content
Log in

Colloidal stability of silver nanoparticles in biologically relevant conditions

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Understanding the colloidal stability of nanoparticles (NPs) plays a key role in phenomenological interpretation of toxicological experiments, particularly if single NPs or their aggregates or agglomerates determine the dominant experimental result. This report examines a variety of instrumental techniques for surveying the colloidal stability of aqueous suspensions of silver nanoparticles (AgNPs), including atomic force microscopy, dynamic light scattering, and colorimetry. It was found that colorimetry can adequately determine the concentration of single AgNPs that remained in solution if morphological information about agglomerates is not required. The colloidal stability of AgNPs with various surface capping agents and in various solvents ranging from cell culture media to different electrolytes of several concentrations, and in different pH conditions was determined. It was found that biocompatible bulky capping agents, such as bovine serum albumin or starch, that provided steric colloidal stabilization, as opposed to purely electrostatic stabilization such as with citrate AgNPs, provided better retention of single AgNPs in solution over a variety of conditions for up to 64 h of observation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • (2006) Standard Reference Material 927d, Bovine serum albumin (7% solution). Accessed 9 Aug. 2009

  • (2008a) Reference Material 8011, Gold nanoparticles, nominal 10 nm diameter. https://www-s.nist.gov/srmors/view_report.cfm?srm=8011

  • (2008b) Reference Material 8012, Gold nanoparticles, nominal 30 nm diameter. https://www-s.nist.gov/srmors/view_report.cfm?srm=8012

  • (2008c) Reference Material 8013, Gold nanoparticles, nominal 60 nm diameter. https://www-s.nist.gov/srmors/view_report.cfm?srm=8013

  • (2010a) FIFRA scientific advisory panel meeting: evaluation of the hazard and exposure associated with nanosilver and other nanometal pesticide products. http://www.epa.gov/scipoly/sap/meetings/2009/november/110309ameetingminutes.pdf. Accessed 26 July 2010

  • (2010b) FY 2007 regulatory support activities. http://www.fda.gov/AboutFDA/CentersOffices/CDRH/CDRHReports/ucm126688.htm. Accessed 26 July 2010

  • Ahamed M, Karns M, Goodson M, Rowe J, Hussain SM, Schlager JJ, Hong YL (2008) DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol 233:404–410

    Article  CAS  Google Scholar 

  • Banerjee IA, Yu LT, MacCuspie RI, Matsui H (2004) Thiolated peptide nanotube assembly as arrays on patterned Au substrates. Nano Lett 4:2437–2440

    Article  CAS  Google Scholar 

  • Blaser SA, Scheringer M, MacLeod M, Hungerbuhler K (2008) Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ 390:396–409

    Article  CAS  Google Scholar 

  • Brewer SH, Glomm WR, Johnson MC, Knag MK, Franzen S (2005) Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir 21:9303–9307

    Article  CAS  Google Scholar 

  • Burleigh TD, Gu Y, Donahey G, Vida M, Waldeck DH (2001) Tarnish protection of silver using a hexadecanethiol self-assembled monolayer and descriptions of accelerated tarnish tests. Corrosion 57:1066–1074

    Article  CAS  Google Scholar 

  • Carey Lea M (1889) On allotropic forms of silver. Am J Sci 37:476–491

    Google Scholar 

  • Cedervall T, Lynch I, Foy M, Berggad T, Donnelly SC, Cagney G, Linse S, Dawson KA (2007a) Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew Chem Int Ed 46:5754–5756

    Article  CAS  Google Scholar 

  • Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H, Dawson KA, Linse S (2007b) Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA 104:2050–2055

    Article  CAS  Google Scholar 

  • Chen Z, Xie S, Shen L, Du Y et al (2008) Investigation of the interactions between silver nanoparticles and Hela cells by scanning electrochemical microscopy. Analyst 133:1221–1228

    Article  CAS  Google Scholar 

  • Dobrovoiskaia MA, Clogston JD, Neun BW, Hall JB, Patri AK, Mcneil SE (2008) Method for analysis of nanoparticle hemolytic properties in vitro. Nano Lett 8:2180–2187

    Article  Google Scholar 

  • Dobrovolskaia MA, Patri AK, Zheng JW, Clogston JD, Ayub N, Aggarwal P, Neun BW, Hall JB, Mcneil SE (2009) Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles. Nanomed Nanotechnol Biol Med 5:106–117

    Article  CAS  Google Scholar 

  • Duan J, Park K, MacCuspie RI, Vaia RA, Pachter R (2009) Optical properties of rodlike metallic nanostructures: insight from theory and experiment. J Phys Chem C 113:15524–15532. doi:10.1021/jp902448f

    Article  CAS  Google Scholar 

  • Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081

    Article  CAS  Google Scholar 

  • Erickson B (2009a) Nanosilver pesticides. Chem Eng News 87:25–26

    Google Scholar 

  • Erickson BE (2009b) Nanosilver in the wash. Chem Eng News 87:12

    Article  Google Scholar 

  • Figueroa JAL, Wrobel K, Afton S, Caruso JA, Corona JFG, Wrobel K (2008) Effect of some heavy metals and soil humic substances on the phytochelatin production in wild plants from silver mine areas of Guanajuato, Mexico. Chemosphere 70:2084–2091

    Article  CAS  Google Scholar 

  • Gao XY, Yu LT, MacCuspie RI, Matsui H (2005) Controlled growth of Se nanoparticles on Ag nanoparticles in different ratios. Adv Mater 17:426

    Article  CAS  Google Scholar 

  • Gardner GE, Jones MG (2009) Bacteria buster: testing antibiotic properties of silver nanoparticles. Am Biol Teach 71:231–234

    Article  Google Scholar 

  • Garrett RH, Grisham CM (1999) Biochemistry, 2nd edn. Saunders College Publishing, Fort Worth

    Google Scholar 

  • Gaul LE, Taud AH (1935) Clinical spectroscopy: seventy cases of generalized argyrosis following organic and colloidal silver medication, including a biospectrometric analysis of ten cases. J Am Med Assoc 104:1387–1390

    Google Scholar 

  • Goldstein HI (1921) Argyria from argyrol. J Am Med Assoc 77:1514

    Google Scholar 

  • Grobelny J, DelRio FW, Pradeep N, Kim D-I, Hackley VA, Cook RF (2009) NIST—NCL joint assay protocol, PCC-6: size measurement of nanoparticles using atomic force microscopy. http://ncl.cancer.gov/working_assay-cascade.asp

  • Hackley VA, Clogston JD (2007) NIST—NCL joint assay protocol PCC-1: measuring the size of nanoparticles in aqueous media using batch-mode dynamic light scattering. http://ncl.cancer.gov/assay_cascade.asp

  • Harper S, Usenko C, Hutchison JE, Maddux BLS, Tanguay RL (2008a) In vivo biodistribution and toxicity depends on nanomaterial composition, size, surface functionalisation and route of exposure. J Exp Nanosci 3:195–206

    Article  CAS  Google Scholar 

  • Harper SL, Dahl JA, Maddux BLS, Tanguay RL, Hutchison JE (2008b) Proactively designing nanomaterials to enhance performance and minimise hazard. Int J Nanotechnol 5:124–142

    Article  CAS  Google Scholar 

  • Height MJ (2009) Evaluation of hazard and exposure associated with nanosilver and other nanometal oxide pesticide products. http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a52512&disposition=attachment&contentType=pdf

  • Henglein A, Giersig M (1999) Formation of colloidal silver nanoparticles: capping action of citrate. J Phys Chem B 103:9533–9539

    Article  CAS  Google Scholar 

  • Hussain SM, Schlager JJ (2009) Safety evaluation of silver nanoparticles: inhalation model for chronic exposure. Toxicol Sci 108:223–224

    Article  CAS  Google Scholar 

  • Izatt RM, Bradshaw JS, Nielsen SA, Lamb JD, Christensen JJ, Sen D (1985) Thermodynamic and kinetic data for cation-macrocycle interaction. Chem Rev 85:271–339. doi:10.1021/cr00068a003

    Article  CAS  Google Scholar 

  • Jiang L, Saetre P, Jazin E, Carlstrom E (2009) Haloperidol changes mRNA expression of a QKI splice variant in human astrocytoma cells. BMC Pharmacol 9:6–10. doi:10.1186/1471-2210-9-6

    Article  CAS  Google Scholar 

  • Kim KJ, Sung WS, Suh BK, Moon SK, Choi JS, Kim J, Lee DG (2009) Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 22:235–242

    Article  CAS  Google Scholar 

  • Kramer RM, Li C, Carter DC, Stone MO, Naik RR (2004) Engineered protein cages for nanomaterial synthesis. J Am Chem Soc 126:13282–13286

    Article  CAS  Google Scholar 

  • Kvitek L, Panacek A, Soukupova J, Kolar M, Vecerova R, Prucek R, Holecova M, Zboril R (2008) Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C 112:5825–5834

    Article  CAS  Google Scholar 

  • Kvitek L, Vanickova M, Panacek A, Soukupova J et al (2009) Initial study on the toxicity of silver nanoparticles (NPs) against Paramecium caudatum. J Phys Chem C 113:4296–4300

    Article  CAS  Google Scholar 

  • Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86:3391–3395

    Article  CAS  Google Scholar 

  • Leonov AP, Zheng JW, Clogston JD, Stern ST, Patri AK, Wei A (2008) Detoxification of gold nanorods by treatment with polystyrenesulfonate. ACS Nano 2:2481–2488

    Article  CAS  Google Scholar 

  • Link S, Mohamed MB, El-Sayed MA (1999) Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J Phys Chem B 103:3073–3077

    Article  CAS  Google Scholar 

  • Liu J, Hurt RH (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44:2169–2175. doi:10.1021/es9035557

    Article  CAS  Google Scholar 

  • Lucas M, Leach AM, McDowell MT, Hunyadi SE, Gall K, Murphy CJ, Riedo E (2008) Plastic deformation of pentagonal silver nanowires: comparison between AFM nanoindentation and atomistic simulations. Phys Rev B 77:245420

    Article  Google Scholar 

  • Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 105:14265–14270

    Article  CAS  Google Scholar 

  • Lynch I, Dawson KA (2008) Protein–nanoparticle interactions. Nano Today 3:40–47

    Article  CAS  Google Scholar 

  • Lynch I, Cedervall T, Lundqvist M, Cabaleiro-Lago C, Linse S, Dawson KA (2007) The nanoparticle–protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century. Adv Colloid Interface Sci 134–135:167–174

    Article  Google Scholar 

  • MacCuspie RI, Banerjee IA, Pejoux C, Gummalla S, Mostowski HS, Krause PR, Matsui H (2008a) Virus assay using antibody-functionalized peptide nanotubes. Soft Matter 4:833–839

    Article  CAS  Google Scholar 

  • MacCuspie RI, Nuraje N, Lee SY, Runge A, Matsui H (2008b) Comparison of electrical properties of viruses studied by AC capacitance scanning probe microscopy. J Am Chem Soc 130:887–891

    Article  CAS  Google Scholar 

  • MacCuspie RI, Allen AJ, Hackleky VA (2010a) Dispersion stabilization of silver nanoparticles in synthethetic lung fluid studied under in situ conditions. Nanotoxicology. doi:10.3109/17435390.2010.504311

  • MacCuspie RI, Elsen AM, Diamanti SJ, Patton ST, Altfeder I, Jacobs JD, Voevodin AA, Vaia RA (2010b) Purification—chemical structure—electrical property relationship in gold nanoparticle liquids. Appl Organomet Chem 24:590–599. doi:10.1002/aoc.1632

    Article  CAS  Google Scholar 

  • Malinsky MD, Kelly KL, Schatz GC, Van Duyne RP (2001) Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers. J Am Chem Soc 123:1471–1482. doi:10.1021/ja003312a

    Article  CAS  Google Scholar 

  • Maynard A (2009) Project on emerging nanotechnologies. Woodrow Wilson International Center for Scholars. http://www.nanotechproject.org/inventories/consumer/analysis_draft/. Accessed 12 March 2010

  • Muniz G, Banerjee IA, Yu LT, Djalali R, Matsui H (2005) Controlled nanocrystal growth on sequence peptide coated nanotubes to fabricate Au, Ag, and Ge nanowires. Abstr Papers Am Chem Soc 229:U1154

    Google Scholar 

  • Murphy CJ, Gole AM, Hunyadi SE, Orendorff CJ (2006) One-dimensional colloidal gold and silver nanostructures. Inorg Chem 45:7544–7554

    Article  CAS  Google Scholar 

  • Nadagouda MN, Varma RS (2007) Synthesis of thermally stable carboxymethyl cellulose/metal biodegradable nanocomposites for potential biological applications. Biomacromolecules 8:2762–2767

    Article  CAS  Google Scholar 

  • Nadagouda MN, Varma RS (2008a) Green synthesis of Ag and Pd nanospheres, nanowires, and nanorods using vitamin B-2: catalytic polymerisation of aniline and pyrrole. J Nanomater. doi:10.1155/2008/782358

  • Nadagouda MN, Varma RS (2008b) Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. Green Chem 10:859–862

    Article  CAS  Google Scholar 

  • Nadagouda MN, Varma RS (2008c) Microwave-assisted shape-controlled bulk synthesis of Ag and Fe nanorods in poly(ethylene glycol) solutions. Cryst Growth Des 8:291–295

    Article  CAS  Google Scholar 

  • Naik RR, Stringer SJ, Agarwal G, Jones SE, Stone MO (2002) Biomimetic synthesis and patterning of silver nanoparticles. Nat Mater 1:169–172

    Article  CAS  Google Scholar 

  • Nam KT, Lee YJ, Krauland EM, Kottmann ST, Belcher AM (2008) Peptide-mediated reduction of silver ions on engineered biological scaffolds. ACS Nano 2:1480–1486. doi:10.1021/nn800018n

    Article  CAS  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386

    Article  CAS  Google Scholar 

  • Nuraje N, Banerjee IA, MacCuspie RI, Yu LT, Matsui H (2004) Biological bottom-up assembly of antibody nanotubes on patterned antigen arrays. J Am Chem Soc 126:8088–8089

    Article  CAS  Google Scholar 

  • Nuraje N, Su K, Samson J, Haboosheh A, MacCuspie RI, Matsui H (2006) Self-assembly of Au nanoparticle-containing peptide nano-rings on surfaces. Supramol Chem 18:429–434

    Article  CAS  Google Scholar 

  • Pauling L (1960) The nature of the chemical bond, 3rd edn. Cornell University Press, Ithaca

    Google Scholar 

  • Perelaer J, Hendriks CE, de Laat AWM, Schubert US (2009) One-step inkjet printing of conductive silver tracks on polymer substrates. Nanotechnology 20:165303

    Article  Google Scholar 

  • Porter D, Sriram K, Wolfarth M, Jefferson A, Schwegler-Berry D, Andrew M, Castranova V (2008) A biocompatible medium for nanoparticle dispersion. Nanotoxicology 2:144–154

    Article  CAS  Google Scholar 

  • Raffi M, Hussain F, Bhatti TM, Akhter JI, Hameed A, Hasan MM (2008) Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. J Mater Sci Technol 24:192–196

    CAS  Google Scholar 

  • Rahman MF, Wang J, Patterson TA, Saini UT et al (2009) Expression of genes related to oxidative stress in the mouse brain after exposure to silver-25 nanoparticles. Toxicol Lett 187:15–21

    Article  CAS  Google Scholar 

  • Rogers JV, Parkinson CV, Choi YW, Speshock JL, Hussain SM (2008) A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation. Nanoscale Res Lett 3:129–133

    Article  Google Scholar 

  • Sager TM, Porter DW, Robinson VA, Lindsley WG, Schwegler-Berry DE, Castranova V (2007) Improved method to disperse nanoparticles for in vitro and in vivo investigation of toxicity. Nanotoxicology 1:118–129

    Article  CAS  Google Scholar 

  • Schack W (1960) Art and argyrol. The life and career of Dr. Albert C. Barnes. Thomas Yoseloff Press, New York

    Google Scholar 

  • Skebo JE, Grabinski CM, Schrand AM, Schlager JJ, Hussain SM (2007) Assessment of metal nanoparticle agglomeration, uptake, and interaction using high-illuminating system. Int J Toxicol 26:135–141

    Article  CAS  Google Scholar 

  • Slocik JM, Tam F, Halas NJ, Naik RR (2007) Peptide-assembled optically responsive nanoparticle complexes. Nano Lett 7:1054–1058

    Article  CAS  Google Scholar 

  • Tao CG, Cullen WG, Williams ED, Hunyadi SE, Murphy CJ (2007) Surface morphology and step fluctuations on Ag nanowires. Surf Sci 601:4939–4943

    Article  CAS  Google Scholar 

  • Tien DC, Tseng KH, Liao CY, Huang JC, Tsung TT (2008) Discovery of ionic silver in silver nanoparticle suspension fabricated by arc discharge method. J Alloys Compd 463:408–411

    Article  CAS  Google Scholar 

  • Tomczak MM, Slocik JM, Stone MD, Naik RR (2007) Bio-based approaches to inorganic material synthesis. Biochem Soc Trans 35:512–515

    Article  CAS  Google Scholar 

  • Tomczak MM, Slocik JM, Stone MO, Naik RR (2008) Biofunctionalized nanoparticles and their uses. MRS Bull 33:519–523

    Article  CAS  Google Scholar 

  • Tsai D-H, DelRio FW, MacCuspie RI, Cho TJ, Zachariah M, Hackley VA (2010) Competitive adsorption of thiolated polyethylene glycol and mercaptopropionic acid on gold nanoparticles measured by physical characterization methods. Langmuir 26:10325–10333. doi:10.1021/la100484a

    Article  CAS  Google Scholar 

  • Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Article  Google Scholar 

  • Voevodin AA, Vaia RA, Patton ST, Diamanti S et al (2007) Nanoparticle-wetted surfaces for relays and energy transmission contacts. Small 3:1957–1963

    Article  CAS  Google Scholar 

  • Wiesner MR, Lowry GV, Alvarez P, Dionysiou D, Biswas P (2006) Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40:4336–4345

    Article  CAS  Google Scholar 

  • Wiesner MR, Lowry GV, Jones KL, Hochella MF, Di Giulio RT, Casman E, Bernhardt ES (2009) Decreasing uncertainties in assessing environmental exposure, risk, and ecological implications of nanomaterials. Environ Sci Technol 43:6458–6462. doi:10.1021/es803621k

    Article  CAS  Google Scholar 

  • Wijnhoven SWP, Peijnenburg WJGM, Herberts CA, Hagens WI et al (2009) Nano-silver: a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3:109–138

    Article  CAS  Google Scholar 

  • Yen H-J, Hsu S-h, Tsai C-L (2009) Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small 5:1553–1561. doi:10.1002/smll.200900126

    Article  CAS  Google Scholar 

  • Yeo MK, Yoon JW (2009) Comparison of the effects of nano-silver antibacterial coatings and silver ions on zebrafish embryogenesis. Mol Cell Toxicol 5:23–31

    Google Scholar 

  • Yu LT, Banerjee IA, Matsui H (2003) Direct growth of shape-controlled nanocrystals on nanotubes via biological recognition. J Am Chem Soc 125:14837–14840

    Article  CAS  Google Scholar 

  • Zheng N, Fan J, Stucky GD (2006) One-step one-phase synthesis of monodisperse noble-metallic nanoparticles and their colloidal crystals. J Am Chem Soc 128:6550–6551

    Article  CAS  Google Scholar 

  • Zook JM, MacCuspie RI, Locascio LE, Elliott JE (2010) Stable nanoparticle aggregates/agglomerates of different sizes and the effect of their sizes on hemolytic cytotoxicity. Nanotoxicology. doi:10.3109/17435390.2010.536615

Download references

Acknowledgments

The author thanks Drs. Vince Hackley, Tae Joon Cho, and Robert Cook for the inspiration for, insightful discussions about, and guidance editing this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert I. MacCuspie.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1242 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacCuspie, R.I. Colloidal stability of silver nanoparticles in biologically relevant conditions. J Nanopart Res 13, 2893–2908 (2011). https://doi.org/10.1007/s11051-010-0178-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-0178-x

Keywords

Navigation