Journal of Nanoparticle Research

, Volume 13, Issue 6, pp 2497–2507 | Cite as

Size effects on the magnetic and optical properties of CuO nanoparticles

Research Paper


Optical and magnetic studies on CuO nanoparticles prepared by a chemical route are reported and the effect of size variation on these properties is discussed. SEM images show that the nanoparticles are interlinked into microspheres with the cages containing visible nanoscale holes. Diffuse reflectance spectroscopy indicates a consistent red shift in the fundamental band gap (indirect band gap) from 1.23 to 1 eV as the size decreases from 29 to 11 nm. This observed red shift is attributed to the presence of defect states within the band gap. A clear blue shift is observed in the direct band gap of these nanoparticles presumably due to the quantum confinement effects. Air-annealed samples show a paramagnetic response whereas particles annealed in a reducing atmosphere show additionally a weak ferromagnetic component at room temperature. For both types of particles, the paramagnetic and ferromagnetic moments, respectively, increase with decreasing size. The role of oxygen vacancies is understood to relate to the generation of free carriers mediating ferromagnetism between Cu spins. AC susceptibility measurements show both the antiferromagnetic transitions of CuO including the one at 231 K which is associated with the onset of the spiral antiferromagnetic phase transition.


Precipitation-pyrolysis X-ray diffraction (XRD) Scanning electron microscopy (SEM) Semiconductor oxide Nanopowder 



A. Mumtaz and S. K. Hasanain acknowledge the support of the Higher Education Commission, Govt. of Pakistan, under the Project “Development and Study of Magnetic Nanostructures”.


  1. Ben-Moshe T, Dror I, Berkowitz B (2009) Oxidation of organic pollutants in aqueous solutions by nanosized copper oxide catalysts. Appl Catal B 85:207–211CrossRefGoogle Scholar
  2. Borgohain K, Mahamuni S (2002) Formation of single-phase CuO quantum particles. J Mater Res 17:1220–1223CrossRefGoogle Scholar
  3. Borgohain K, Singh JB, Rao MVR, Shripathi T, Mahamuni S (2000) Quantum size effects in CuO nanoparticles. Phys Rev B 61:11093–11096CrossRefGoogle Scholar
  4. Borzi RA, Stewart SJ, Mercader RC, Punte G, Garcia F (2001) Magnetic behavior of nanosized cupric oxide. J Magn Magn Mater 226–230:1513–1515CrossRefGoogle Scholar
  5. Chen XY, Cui H, Liu P, Yang GW (2007) Shape-induced ultraviolet absorption of CuO shuttlelike nanoparticles. Appl Phys Lett 90:183118CrossRefGoogle Scholar
  6. Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Eddison-Wesley Publishing Co, MassachusettsGoogle Scholar
  7. Eskes H, Tjeng LH, Sawaizky GA (1990) Cluster-model calculation of the electronic structure of CuO: a model material for the high T c superconductors. Phys Rev B 41:288–299CrossRefGoogle Scholar
  8. Fan H, Yang L, Hua W, Wu X, Wu Z, Xie S, Zou B (2004) Controlled synthesis of monodispersed CuO nanocrystals. Nanotechnology 15:37–42CrossRefGoogle Scholar
  9. Ghijsen J, Tjeng LH, van Elp J, Eskes H, Westerink J, Sawatzky GA, Czyzyk MT (1988) Electronic structure of Cu2O and CuO. Phys Rev B 38:11322–11330CrossRefGoogle Scholar
  10. Gizhevskii BA, Sukhorukov Yu P, Moskvin AS, Loshkareva NN, Mostovshchikova EV, Ermakov AE, Kozlov EA, Uimin MA, Gaviko VS (2006) Anomalies in the optical properties of nanocrystalline copper oxides CuO and Cu2O near the fundamental absorption edge. JETP 102:297–302CrossRefGoogle Scholar
  11. Jeong YK, Choi GM (1996) Nonstoichiometry and electrical conduction of CuO. Phys Chem Solids 57:81–84CrossRefGoogle Scholar
  12. Kimura T, Sekio Y, Nakamura H, Siegrist T, Ramirez AP (2008) Cupric oxide as an induced-multiferroic with high-TC. Nat Mater 7:291–294CrossRefGoogle Scholar
  13. Koffyberg FP, Benko FA (1982) A photoelectrochemical determination of the position of the conduction and valence band edges of p-type CuO. J Appl Phys 53:1173–1177CrossRefGoogle Scholar
  14. Koo H-J, Whangbo M-H (2003) Magnetic superstructures of cupric oxide CuO as ordered arrangements of one-dimensional antiferromagnetic chains. Inorg Chem 42:1187–1192CrossRefGoogle Scholar
  15. Lajunen LHJ, Peramaki P (2004) Spectrochemical analysis by atomic absorption and emission. Royal Society of Chemistry, CambridgeGoogle Scholar
  16. Lin H, Huang CP, Li W, Ni C, Shah SI, Tseng Y-H (2006) Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Appl Catal B 68:1–11CrossRefGoogle Scholar
  17. Maaz K, Mumtaz A, Hasanain SK, Cylan A (2007) Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route. J Magn Magn Mater 308:289–295CrossRefGoogle Scholar
  18. Marabelli F, Parravicini GB (1994) Evidence of localized states in the optical gap of CuO. Phys B 199–200:255–256CrossRefGoogle Scholar
  19. Mishra SR, Losby J, Dubenko I, Roy S, Ali N, Marasinghe K (2004) Magnetic properties of mechanically milled nanosized cupric oxide. J Magn Magn Mater 279:111–117CrossRefGoogle Scholar
  20. Morales J, Sánchez L, Martín F, Ramos-Barradob JR, Sánchez M (2004) Nanostructured CuO thin film electrodes prepared by spray pyrolysis: a simple method for enhancing the electrochemical performance of CuO in lithium cells. Electrochim Acta 49:4589–4597CrossRefGoogle Scholar
  21. Mørup S, Madsen DE, Frandsen C, Bahl CRH, Hansen MF (2007) Experimental and theoretical studies of nanoparticles of antiferromagnetic materials. J Phys 19:213202Google Scholar
  22. Ovchinnikov SG, Gizhevskii BA, Sukhorukov Yu P, Ermakov AE, Uimin MA, Kozlov EA, Kotov Ya, Bagazeev AAV (2007) Specific features of the electronic structure and optical spectra of nanoparticles with strong electron correlations. Phys Solid State 49:1116–1120CrossRefGoogle Scholar
  23. Papadimitropoulos G, Vourdas N, Vamvakas VEm, Davazoglou D (2006) Optical and structural properties of copper oxide thin films grown by oxidation of metal layers. Thin Solid Films 515:2428–2432CrossRefGoogle Scholar
  24. Parmigiani F, Samoggia G (1988) Experimental evidence of a fluctuating charge state in cupric oxide. Europhys Lett 7:543–548CrossRefGoogle Scholar
  25. Punnoose A, Seehra MS (2002) Hysteresis anomalies and exchange bias in 6.6 nm CuO nanoparticles. J Appl Phys 91:7766–7768CrossRefGoogle Scholar
  26. Punnoose A, Magnone H, Seehra MS, Bonevich J (2001) Bulk to nanoscale magnetism and exchange bias in CuO nanoparticles. Phys Rev B 64:174420CrossRefGoogle Scholar
  27. Qi JQ, Tian HY, Li LT, Chan HLW (2007) Fabrication of CuO nanoparticles interlinked microsphere cages by solution method. Nanoscale Res Lett 2:107–111CrossRefGoogle Scholar
  28. Schmid C (2004) Nanoparticles, 1st edn. Wiley-VCH Verlag GmbH & Co, WeinheimGoogle Scholar
  29. Seehra MS, Punnoose A (2003) Particle size dependence of exchange bias and coercivity in CuO nanoparticles. Solid State Commun 128:299–302CrossRefGoogle Scholar
  30. Shimizu T, Matsumoto T, Goto A, Rao TVC, Yoshimura K, Kosuge K (2003) Spin susceptibility and superexchange interaction in the antiferromagnet CuO. Phys Rev B 68:224433CrossRefGoogle Scholar
  31. Simmons EL (1975) Diffuse reflectance spectroscopy: a comparison of the theories. Appl Opt 14:1380–1386CrossRefGoogle Scholar
  32. Stewart SJ, Multigner M, Marco JF, Berry FJ, Hernando A, Gonzáez JM (2004) Thermal dependence of the magnetization of antiferromagnetic copper (II) oxide nanoparticles. Solid State Commun 130:247–251CrossRefGoogle Scholar
  33. Sukhorukov Yu P, Gizhevskii BA, Mostovshchikova EV, Yermakov AYe, Tugushev SN, Kozlov EA (2006) Nanocrystalline copper oxide for selective solar energy absorbers. Tech Phys Lett 32:132–135CrossRefGoogle Scholar
  34. Sundaresan A, Bhargavi R, Rangarajan N, Siddesh U, Rao CNR (2006) Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Phys Rev B 74:161306CrossRefGoogle Scholar
  35. Willardson RK, Beer AC (1967) Semiconductor and semimetals: optical properties of III-V compounds, vol 3. Academic press, New YorkGoogle Scholar
  36. Wu D, Zhang Q, Tao M (2006) LSDA + U study of cupric oxide: electronic structure and native point defects. Phys Rev B 73:235206CrossRefGoogle Scholar
  37. Yang BX, Tranquada JM, Shirane G (1988) Neutron scattering studies of the magnetic structure of cupric oxide. Phys Rev B 38:174–178CrossRefGoogle Scholar
  38. Yang BX, Thurston TR, Tranquada JM, Shirane G (1989) Neutron scattering studies of the magnetic structure of cupric oxide. Phys Rev B 39:4343–4349CrossRefGoogle Scholar
  39. Yoon SD, Chen Y, Yang A, Goodrich TL, Zuo X, Arena DA, Ziemer K, Vittoria C, Harris VG (2006) Oxygen-defect-induced magnetism to 880 K in semiconducting anatase TiO2−δ films. J Phys 18:L355–L361Google Scholar
  40. Zheng XG, Xu CN, Tomokiyo Y, Tanaka E, Yamada H, Soejima Y (2000) Observation of charge stripes in cupric oxide. Phys Rev Lett 85:5170–5173CrossRefGoogle Scholar
  41. Zheng XG, Mori T, Nishiyama K, Higemoto W, Xu CN (2004) Dramatic suppression of antiferromagnetic coupling in nanoparticles CuO. Solid State Commun 132:493–496CrossRefGoogle Scholar
  42. Zheng XG, Xu CN, Nishikubo K, Nishiyama K, Higemoto W, Moon WJ, Tanaka E, Otabe ES (2005) Finite-size effect on Néel temperature in antiferromagnetic nanoparticles. Phys Rev B 72:014464CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of PhysicsQuaid-I-Azam UniversityIslamabadPakistan

Personalised recommendations