Skip to main content

Advertisement

Log in

a-Si/SiN x multilayered light absorber for solar cell

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

40 alternate a-Si/SiN x multilayer are incorporated as an absorber layer in a p–i–n solar cell. The device is fabricated using hot-wire chemical vapor deposition (HWCVD) technique. The structure of the multilayer film is examined by high resolution transmission electron microscopy (HR-TEM) which shows distinct formation of alternate a-Si and SiN x layers. The a-Si and SiN x layers have thickness of ~3.5 and 4 nm, respectively. The photoluminescence (PL) of multilayer film shows bandgap energy of ~2.52 eV, is larger than that of the c-Si and a-Si. Dark and illuminated current–voltage (IV) characterization of the ML films shows that these ML are photosensitive. In the present work, it is seen that the p–i–n structure with i-layer as ML quantum well (QW) structures show photovoltaic effect with relatively high open-circuit voltage (V OC). The increment of bandgap energy in PL and high V OC of the device is attributed to the quantum confinement effect (QCE).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abeles B, Tiedje T (1983) Amorphous semiconductor superlattices. Phys Rev Lett 51:2003–2006

    Article  CAS  Google Scholar 

  • Green MA (2000) Potential for low dimensional structures in photovoltaics. Mater Sci Eng B74:118–124

    Article  CAS  Google Scholar 

  • Hazama Y, Yamada K, Miyazaki S, Hirose M (1989) a-Si3N4:H/a-Si:H superlattices produced by plasma enhanced nitridation of a-Si:H. J Non Cryst Solids 114:777–779

    Article  CAS  Google Scholar 

  • Jiang CW, Green MA (2006) Silicon quantum dot supperlattices: modeling of energy bands, densities of states, and mobilities for silicon tandem solar cell applications. J Appl Phys 99:114902–114908

    Article  Google Scholar 

  • Matsumura H, Umemoto H, Masuda A (2004) Cat-CVD (hot-wire CVD): how different from PECVD in preparing amorphous silicon. J Non Cryst Solids 338–340:19–26

    Article  Google Scholar 

  • Murayama K, Toyama T, Miyazaki S, Hirose M (1997) Fundamental absorption edge spectrum of ultrathin a-Si:H film in a-Si:H/a-Si3N4:H multilayer obtained from luminescence excitation spectrum. Solid State Commun 104(2):119–123

    Article  CAS  Google Scholar 

  • Panchal AK, Solanki CS (2009a) Fabrication of silicon quantum dots in SiN x multilayer using hot-wire CVD. J Cryst Growth 311:2659–2663

    Article  CAS  Google Scholar 

  • Panchal AK, Solanki CS (2009b) Post deposition annealing temperature effect on silicon quantum dots embedded in silicon nitride dielectric multilayer prepared by hot-wire chemical vapor deposition. Thin Solid Films 517:3488–3491

    Article  CAS  Google Scholar 

  • Rölver R, Berghoff B, Bätzner DL, Spangenberg B, Kurz H (2008a) Lateral Si/SiO2 quantum well solar cells. Appl Phys Lett 92:212108

    Article  Google Scholar 

  • Rölver R, Berghoff B, Bätzner DL, Spangenberg B, Kurz H, Schmidt M, Stegemann B (2008b) Si/SiO2 multiple quantum wells for all silicon tandem cells: conductivity and photocurrent measurements. Thin Solid Films 516:6763–6766

    Article  Google Scholar 

  • Schropp REI, van der Werf CHM, Verlaan V, Rath JK, Li H (2009) Ultrafast deposition of silicon nitride and semiconductor silicon thin films by hot wire chemical vapor deposition. Thin Solid Films 517:3039–3042

    Article  CAS  Google Scholar 

  • Stegemann B, Schoepke A, Schmidt M (2008) Structure and photoelectrical properties of SiO2/Si/SiO2 single quantum wells prepared under ultrahigh vacuum conditions. J Non Cryst Solids 354:2100–2104

    Article  CAS  Google Scholar 

  • Sze SM (1981) Physics of semiconductor devices, 2nd edn, chap 1. Wiley, New York, pp 30

  • Sze SM, Ng KK (2007) Physics of semiconductor devices, 3rd edn. Wiley-Interscience, Wiley, New York

  • Umemoto H, Nozaki Y, Kitazoe M, Horii K, Ohara K, Morita D, Uchida K, Ishibashi Y, Komoda M, Kamesaki K, Izumi A, Masuda A, Matsumura H (2002) Effects of atomic hydrogen in gas phase on a-Si:H and poly-Si growth by catalytic CVD. J Non Cryst Solids 299–302:9–13

    Article  Google Scholar 

  • van Veen MK, Schropp REI (2003) Understanding shunting behavior in hot-wire-deposited amorphous silicon solar cells. Appl Phys Lett 82(2):287–289

    Article  Google Scholar 

  • van Veen MK, van Veenendaal PATT, van der Werf CHM, Rath JK, Schropp REI (2002) a-Si:H/poly-Si tandem cells deposited by hot-wire CVD. J Non Cryst Solids 299–302:1194–1197

    Article  Google Scholar 

  • van Veen MK, van der Werf VHM, Rath JK, Schropp REI (2003) Incorporation of amorphous and microcrystalline silicon in n–i–p solar cells. Thin Solid Films 430:216–219

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Dr. P. K. Narwankar, Applied Materials USA for the TEM analysis of films. Discussions for characterizations of films with Prof. S. S. Major, IIT Bombay are also overwhelmed by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Panchal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panchal, A.K., Rai, D.K., Mathew, M. et al. a-Si/SiN x multilayered light absorber for solar cell. J Nanopart Res 13, 2469–2473 (2011). https://doi.org/10.1007/s11051-010-0139-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-0139-4

Keywords

Navigation