Journal of Nanoparticle Research

, Volume 13, Issue 6, pp 2469–2473 | Cite as

a-Si/SiN x multilayered light absorber for solar cell

  • A. K. Panchal
  • D. K. Rai
  • Meril Mathew
  • C. S. Solanki
Research Paper


40 alternate a-Si/SiN x multilayer are incorporated as an absorber layer in a p–i–n solar cell. The device is fabricated using hot-wire chemical vapor deposition (HWCVD) technique. The structure of the multilayer film is examined by high resolution transmission electron microscopy (HR-TEM) which shows distinct formation of alternate a-Si and SiN x layers. The a-Si and SiN x layers have thickness of ~3.5 and 4 nm, respectively. The photoluminescence (PL) of multilayer film shows bandgap energy of ~2.52 eV, is larger than that of the c-Si and a-Si. Dark and illuminated current–voltage (IV) characterization of the ML films shows that these ML are photosensitive. In the present work, it is seen that the p–i–n structure with i-layer as ML quantum well (QW) structures show photovoltaic effect with relatively high open-circuit voltage (V OC). The increment of bandgap energy in PL and high V OC of the device is attributed to the quantum confinement effect (QCE).


a-Si/SiNx multilayer HR-TEM IV p–i–n Solar cell HWCVD Quantum confinement effect Quantum well Energy conversion 



Authors would like to thank Dr. P. K. Narwankar, Applied Materials USA for the TEM analysis of films. Discussions for characterizations of films with Prof. S. S. Major, IIT Bombay are also overwhelmed by the authors.


  1. Abeles B, Tiedje T (1983) Amorphous semiconductor superlattices. Phys Rev Lett 51:2003–2006CrossRefGoogle Scholar
  2. Green MA (2000) Potential for low dimensional structures in photovoltaics. Mater Sci Eng B74:118–124CrossRefGoogle Scholar
  3. Hazama Y, Yamada K, Miyazaki S, Hirose M (1989) a-Si3N4:H/a-Si:H superlattices produced by plasma enhanced nitridation of a-Si:H. J Non Cryst Solids 114:777–779CrossRefGoogle Scholar
  4. Jiang CW, Green MA (2006) Silicon quantum dot supperlattices: modeling of energy bands, densities of states, and mobilities for silicon tandem solar cell applications. J Appl Phys 99:114902–114908CrossRefGoogle Scholar
  5. Matsumura H, Umemoto H, Masuda A (2004) Cat-CVD (hot-wire CVD): how different from PECVD in preparing amorphous silicon. J Non Cryst Solids 338–340:19–26CrossRefGoogle Scholar
  6. Murayama K, Toyama T, Miyazaki S, Hirose M (1997) Fundamental absorption edge spectrum of ultrathin a-Si:H film in a-Si:H/a-Si3N4:H multilayer obtained from luminescence excitation spectrum. Solid State Commun 104(2):119–123CrossRefGoogle Scholar
  7. Panchal AK, Solanki CS (2009a) Fabrication of silicon quantum dots in SiNx multilayer using hot-wire CVD. J Cryst Growth 311:2659–2663CrossRefGoogle Scholar
  8. Panchal AK, Solanki CS (2009b) Post deposition annealing temperature effect on silicon quantum dots embedded in silicon nitride dielectric multilayer prepared by hot-wire chemical vapor deposition. Thin Solid Films 517:3488–3491CrossRefGoogle Scholar
  9. Rölver R, Berghoff B, Bätzner DL, Spangenberg B, Kurz H (2008a) Lateral Si/SiO2 quantum well solar cells. Appl Phys Lett 92:212108CrossRefGoogle Scholar
  10. Rölver R, Berghoff B, Bätzner DL, Spangenberg B, Kurz H, Schmidt M, Stegemann B (2008b) Si/SiO2 multiple quantum wells for all silicon tandem cells: conductivity and photocurrent measurements. Thin Solid Films 516:6763–6766CrossRefGoogle Scholar
  11. Schropp REI, van der Werf CHM, Verlaan V, Rath JK, Li H (2009) Ultrafast deposition of silicon nitride and semiconductor silicon thin films by hot wire chemical vapor deposition. Thin Solid Films 517:3039–3042CrossRefGoogle Scholar
  12. Stegemann B, Schoepke A, Schmidt M (2008) Structure and photoelectrical properties of SiO2/Si/SiO2 single quantum wells prepared under ultrahigh vacuum conditions. J Non Cryst Solids 354:2100–2104CrossRefGoogle Scholar
  13. Sze SM (1981) Physics of semiconductor devices, 2nd edn, chap 1. Wiley, New York, pp 30Google Scholar
  14. Sze SM, Ng KK (2007) Physics of semiconductor devices, 3rd edn. Wiley-Interscience, Wiley, New YorkGoogle Scholar
  15. Umemoto H, Nozaki Y, Kitazoe M, Horii K, Ohara K, Morita D, Uchida K, Ishibashi Y, Komoda M, Kamesaki K, Izumi A, Masuda A, Matsumura H (2002) Effects of atomic hydrogen in gas phase on a-Si:H and poly-Si growth by catalytic CVD. J Non Cryst Solids 299–302:9–13CrossRefGoogle Scholar
  16. van Veen MK, Schropp REI (2003) Understanding shunting behavior in hot-wire-deposited amorphous silicon solar cells. Appl Phys Lett 82(2):287–289CrossRefGoogle Scholar
  17. van Veen MK, van Veenendaal PATT, van der Werf CHM, Rath JK, Schropp REI (2002) a-Si:H/poly-Si tandem cells deposited by hot-wire CVD. J Non Cryst Solids 299–302:1194–1197CrossRefGoogle Scholar
  18. van Veen MK, van der Werf VHM, Rath JK, Schropp REI (2003) Incorporation of amorphous and microcrystalline silicon in n–i–p solar cells. Thin Solid Films 430:216–219CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • A. K. Panchal
    • 1
  • D. K. Rai
    • 1
  • Meril Mathew
    • 1
  • C. S. Solanki
    • 1
  1. 1.Department of Energy Science and EngineeringIndian Institute of Technology BombayMumbaiIndia

Personalised recommendations