Journal of Nanoparticle Research

, Volume 13, Issue 3, pp 997–1005 | Cite as

Photocatalytic synthesis of silver nanoparticles using polysilane initiator

  • Liviu Sacarescu
  • Mihaela Simionescu
  • Gabriela Sacarescu
  • Elena Gabriela Hitruc
Research Paper


This study shows that the exposure to visible light of the poly[diphenylsilane-co-methyl(H)silane] solution together with a silver salt, initiates a photocatalytic process which leads to the formation of metal nanoparticles. This phenomenon is a consequence of close-range interactions between the methylhydrosilyls’ σ-conjugated segments and the metal ions at the salt surface. Due to the weak charge transfer complexes thin films casted from solution show a specific morphology with microdomains of various dimensions and shapes in relation with the stage of the process. The polymethylhydrosilane copolymer stabilizes the synthesized nanoparticles in a similar manner as the conventional surfactants do. The polymer chemical structure is not affected during the photocatalytic process and the optical and electronic properties of polysilanes are well preserved.


Silver nanoparticles Synthesis Polysilanes Nanocomposite Core–shell polymer 



The authors thank to Romanian Ministry of Education—Matnantech project No. 36/2005 for supporting this study.

Supplementary material

11051_2010_120_MOESM1_ESM.pdf (188 kb)
Supplementary material 1 (PDF 187 kb)


  1. Andres RP, Bielefeld JD, Henderson JI, Janes DB, Kolagunta VR, Kubiak CP, Mahoney WJ, Osifchin RG (1996) Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters. Science 273:1690–1693. doi: 10.1126/science.273.5282.1690 CrossRefGoogle Scholar
  2. Angelopoulos M (1998) Conducting polymers in microelectronics. In: Skotheim TA, Elsenbaumer RL, Reynolds JR (eds) Handbook of conducting polymers, 2nd edn. Marcel Dekker, New York, pp 921–944Google Scholar
  3. Bradley JS, Milnar JM, Hill EW (1991) Surface chemistry on colloidal metals: a high-resolution NMR study of carbon monoxide adsorbed on metallic palladium crystallites in colloidal suspension. J Am Chem Soc 113:4016–4017. doi: 10.1021/ja00010a067 CrossRefGoogle Scholar
  4. Caruso F, Möhwald H (1999) Preparation and characterization of ordered nanoparticle and polymer composite multilayers on colloids. Langmuir 15:8276–8281. doi: 10.1021/la990426v CrossRefGoogle Scholar
  5. Chai J, Buriak JM (2008) Using cylindrical domains of block copolymers to self-assemble and align metallic nanowires. ACS Nano 2:489–501. doi: 10.1021/nn700341s CrossRefGoogle Scholar
  6. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346. doi: 10.1021/cr030698+ CrossRefGoogle Scholar
  7. Fukushima M, Naguchi N, Aramata M, Hamada Y, Tabei E, Mori S, Yamamoto Y (1998) Polysilanes as conducting material producers and their application to metal pattern formation by UV light and electroless metallization. Synth Met 97:273–280. doi: 10.1016/S0379-6779(98)00145-3 CrossRefGoogle Scholar
  8. Khokhlov AR, Dormidontova EE (1997) Self-organization in ion-containing polymer systems. Physics-Uspekhi 40:109–124. doi: 10.1070/PU1997v040n02ABEH000191 CrossRefGoogle Scholar
  9. Laiho A, Ras RHA, Valkama S, Ruokolainen J, Österbacka R, Ikkala O (2006) Control of self-assembly by charge-transfer complexation between C60 fullerene and electron donating units of block copolymers. Macromolecules 39:7648–7653. doi: 10.1021/ma061165g CrossRefGoogle Scholar
  10. Li J, Dierschke F, Wu J, Grimsdale AC, Müllen K (2006) Poly(2,7-carbazole) and perylene tetracarboxydiimide: a promising donor/acceptor pair for polymer solar cells. J Mater Chem 16:96–100. doi: 10.1039/b512373a CrossRefGoogle Scholar
  11. Miller RD, Michl J (1989) Polysilane high polymers. Chem Rev 89:1359–1410. doi: 10.1021/cr00096a006 CrossRefGoogle Scholar
  12. Neoh KG, Tan KK, Goh PL, Huang SW, Kang ET, Tan KL (1999) Electroactive polymer–SiO2 nanocomposites for metal uptake. Polymer 40:887–893. doi: 10.1016/S0032-3861(98)00297-3 CrossRefGoogle Scholar
  13. Oyamada H, Akiyama R, Hagio H, Naito T, Kobayashi S (2006) Polysilane-supported Pd and Pt nanoparticles as efficient catalysts for organic synthesis. Chem Commun 4297–4299. doi: 10.1039/b610241g
  14. Pang J, Xiong S, Jaeckel F, Sun Z, Dunphy D, Brinker CJ (2008) Free-standing, patternable nanoparticle/polymer monolayer arrays formed by evaporation induced self-assembly at a fluid interface. J Am Chem Soc 130:3284–3285. doi: 10.1021/ja710994m CrossRefGoogle Scholar
  15. Qi D, Kwong K, Rademacher K, Wolf MO, Young JF (2003) Optical emission of conjugated polymers adsorbed to nanoporous alumina. Nano Lett 3:1265–1268. doi: 10.1021/nl034070q CrossRefGoogle Scholar
  16. Rabin Y, Marko JF (1991) Microphase separation in charged diblock copolymers: the weak segregation limit. Macromolecules 24:2134–2136. doi: 10.1021/ma00008a074 CrossRefGoogle Scholar
  17. Rifai S, Breen CA, Solis DJ, Swager TM (2006) Facile in situ silver nanoparticle formation in insulating porous polymer matrices. Chem Mater 18:21–25. doi: 10.1021/cm0511419 CrossRefGoogle Scholar
  18. Sacarescu G, Sacarescu L, Ardeleanu R, Kurcok P, Jedlinski Z (2001) Si–H functional polysilanes via a homogeneous reductive coupling reaction. Macromol Rapid Commun 22:405–408. doi: 10.1002/1521-3927(20010301)22 CrossRefGoogle Scholar
  19. Sakurai H, Kira M, Uchida T (1973) Intermolecular donation of a sigma-electron from group IVb catenates to tetracyanoethylene. Evidence of electron paramagnetic resonance and charge-transfer spectra. J Am Chem Soc 95:6826–6827. doi: 10.1021/ja00801a050 CrossRefGoogle Scholar
  20. Sanji T, Ogawa Y, Nakatsuka Y, Tanaka M, Sakurai H (2003) Metal nanoparticles derived from polysilane shell cross-linked micelle templates. Chem Lett 980–981. doi: 10.1246/cl.2003.980
  21. Schmid G, Bäumle M, Geerkens M, Heim I, Osemann C, Sawitowski T (1999) Current and future applications of nanoclusters. Chem Soc Rev 28:179–185. doi: 10.1039/a801153b CrossRefGoogle Scholar
  22. Schmid G, Simon U (2005) Gold nanoparticles: assembly and electrical properties in 1–3 dimensions. Chem Commun 697–710. doi: 10.1039/b411696h
  23. Shein JB, Lai LMH, Eggers PK, Paddon-Row MN, Gooding JJ (2009) Formation of efficient electron transfer pathways by adsorbing gold nanoparticles to self-assembled monolayer modified electrodes. Langmuir 25:11121–11128. doi: 10.1021/la901421m CrossRefGoogle Scholar
  24. Sidorov SN, Bronstein LM, Valetsky PM, Hartmann J, Colfen H, Schnablegger H, Antonietti M (1999) Stabilization of metal nanoparticles in aqueous medium by polyethyleneoxide–polyethyleneimine block copolymers. J Colloid Interface Sci 212:197–211. doi: 10.1006/jcis.1998.6035 CrossRefGoogle Scholar
  25. Sinha A, Das SK, Kumar BR, Chakroborty S, Rao V, Ramachandrarao P (2000) Polymer-mediated synthesis of fine-sized cobalt particles. J Mater Synth Process 8:109–113. doi: 10.1023/A:1026626220902 CrossRefGoogle Scholar
  26. Skryshevski YuA (2002) The influence of the preparation conditions on the energy disorder in poly(methylphenyl)silane films. Phys Solid State 44:1785–1790. doi: 10.1134/1.1507266 CrossRefGoogle Scholar
  27. Sommer M, Lindner SM, Thelakkat M (2007) Microphase-separated donor-acceptor diblock copolymers: influence of homo energy levels and morphology on polymer solar cells. Adv Funct Mater 17:1493–1500. doi: 10.1002/adfm.200600634 CrossRefGoogle Scholar
  28. Sun Y-P, Michl J (1992) Models for polysilane high polymers. 2. Photophysics of linear permethylhexasilane: a low-lying Franck-Condon forbidden excited singlet state. J Am Chem Soc 114:8186–8190. doi: 10.1021/ja00047a031 CrossRefGoogle Scholar
  29. Sun Y-P, Hamada Y, Huang L-M, Maxka J, Hsiao J-S, West R, Michl J (1992) Models of polysilane high polymers. 1. Singlet photophysics of linear permethylhexadecasilane (Si16Me34). J Am Chem Soc 114:6301–6310. doi: 10.1021/ja00042a005 CrossRefGoogle Scholar
  30. Tamai T, Watanabe M, Hatanaka Y, Tsujiwaki H (2008) Formation of metal nanoparticles on the surface of polymer particles incorporating polysilane by UV irradiation. Langmuir 24:14203–14208. doi: 10.1021/la801809u CrossRefGoogle Scholar
  31. Tannenbaum R, Flenniken CL, Goldberg EP (1990) Magnetic metal-polymer composites: thermal and oxidative decomposition of Fe(CO)5 and CO2(CO)8 in a poly (vinylidene fluoride) matrix. J Polym Sci Polym Phys Ed 28:2421–2433. doi: 10.1002/polb.1990.090281218 CrossRefGoogle Scholar
  32. Tretiak S, Kilina S, Piryatinski A, Saxena A, Martin RL, Bishop AR (2007) Excitons and Peierls distortion in conjugated carbon nanotubes. Nano Lett 7:86–92. doi: 10.1021/nl0622000 CrossRefGoogle Scholar
  33. von Werne T, Patten TE (2001) ATRP from nanoparticles: a tool for the preparation of well-defined hybrid nanostructures and for understanding the chemistry of controlled/“living” radical polymerizations from surfaces. J Am Chem Soc 123:7497–7505. doi: 10.1021/ja010235q CrossRefGoogle Scholar
  34. Wang Z, Chumanov G (2003) WO3 sol–gel modified Ag nanoparticle arrays for electrochemical modulation of surface plasmon resonance. Adv Mater 15:1285–1289. doi: 10.1002/adma.200304989 CrossRefGoogle Scholar
  35. Wang Y, West R, Chien Y-H (1993) Fullerene-doped polysilane photoconductor. J Am Chem Soc 115:3844–3845. doi: 10.1021/ja00062a088 CrossRefGoogle Scholar
  36. Wolff AR, Nozue I, Maxka J, West R (1988) 29Si nuclear magnetic resonance of dimethyl and phenylmethyl containing polysilanes. J Polym Sci A 26:701–712. doi: 10.1002/pola.1988.080260303 CrossRefGoogle Scholar
  37. Zhou Y, Itoh H, Uemura T, Naka K, Chujo Y (2001) Preparation of π-conjugated polymer-protected gold nanoparticles in stable colloidal form. Chem Commun 613–614. doi: 10.1039/b100636n

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Liviu Sacarescu
    • 1
  • Mihaela Simionescu
    • 1
  • Gabriela Sacarescu
    • 1
  • Elena Gabriela Hitruc
    • 1
  1. 1.“Petru Poni” Institute of Macromolecular ChemistryIasiRomania

Personalised recommendations