Skip to main content
Log in

Photocatalytic synthesis of silver nanoparticles using polysilane initiator

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This study shows that the exposure to visible light of the poly[diphenylsilane-co-methyl(H)silane] solution together with a silver salt, initiates a photocatalytic process which leads to the formation of metal nanoparticles. This phenomenon is a consequence of close-range interactions between the methylhydrosilyls’ σ-conjugated segments and the metal ions at the salt surface. Due to the weak charge transfer complexes thin films casted from solution show a specific morphology with microdomains of various dimensions and shapes in relation with the stage of the process. The polymethylhydrosilane copolymer stabilizes the synthesized nanoparticles in a similar manner as the conventional surfactants do. The polymer chemical structure is not affected during the photocatalytic process and the optical and electronic properties of polysilanes are well preserved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andres RP, Bielefeld JD, Henderson JI, Janes DB, Kolagunta VR, Kubiak CP, Mahoney WJ, Osifchin RG (1996) Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters. Science 273:1690–1693. doi:10.1126/science.273.5282.1690

    Article  CAS  Google Scholar 

  • Angelopoulos M (1998) Conducting polymers in microelectronics. In: Skotheim TA, Elsenbaumer RL, Reynolds JR (eds) Handbook of conducting polymers, 2nd edn. Marcel Dekker, New York, pp 921–944

    Google Scholar 

  • Bradley JS, Milnar JM, Hill EW (1991) Surface chemistry on colloidal metals: a high-resolution NMR study of carbon monoxide adsorbed on metallic palladium crystallites in colloidal suspension. J Am Chem Soc 113:4016–4017. doi:10.1021/ja00010a067

    Article  CAS  Google Scholar 

  • Caruso F, Möhwald H (1999) Preparation and characterization of ordered nanoparticle and polymer composite multilayers on colloids. Langmuir 15:8276–8281. doi:10.1021/la990426v

    Article  CAS  Google Scholar 

  • Chai J, Buriak JM (2008) Using cylindrical domains of block copolymers to self-assemble and align metallic nanowires. ACS Nano 2:489–501. doi:10.1021/nn700341s

    Article  CAS  Google Scholar 

  • Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346. doi:10.1021/cr030698+

    Article  CAS  Google Scholar 

  • Fukushima M, Naguchi N, Aramata M, Hamada Y, Tabei E, Mori S, Yamamoto Y (1998) Polysilanes as conducting material producers and their application to metal pattern formation by UV light and electroless metallization. Synth Met 97:273–280. doi:10.1016/S0379-6779(98)00145-3

    Article  CAS  Google Scholar 

  • Khokhlov AR, Dormidontova EE (1997) Self-organization in ion-containing polymer systems. Physics-Uspekhi 40:109–124. doi:10.1070/PU1997v040n02ABEH000191

    Article  Google Scholar 

  • Laiho A, Ras RHA, Valkama S, Ruokolainen J, Österbacka R, Ikkala O (2006) Control of self-assembly by charge-transfer complexation between C60 fullerene and electron donating units of block copolymers. Macromolecules 39:7648–7653. doi:10.1021/ma061165g

    Article  CAS  Google Scholar 

  • Li J, Dierschke F, Wu J, Grimsdale AC, Müllen K (2006) Poly(2,7-carbazole) and perylene tetracarboxydiimide: a promising donor/acceptor pair for polymer solar cells. J Mater Chem 16:96–100. doi:10.1039/b512373a

    Article  CAS  Google Scholar 

  • Miller RD, Michl J (1989) Polysilane high polymers. Chem Rev 89:1359–1410. doi:10.1021/cr00096a006

    Article  CAS  Google Scholar 

  • Neoh KG, Tan KK, Goh PL, Huang SW, Kang ET, Tan KL (1999) Electroactive polymer–SiO2 nanocomposites for metal uptake. Polymer 40:887–893. doi:10.1016/S0032-3861(98)00297-3

    Article  CAS  Google Scholar 

  • Oyamada H, Akiyama R, Hagio H, Naito T, Kobayashi S (2006) Polysilane-supported Pd and Pt nanoparticles as efficient catalysts for organic synthesis. Chem Commun 4297–4299. doi:10.1039/b610241g

  • Pang J, Xiong S, Jaeckel F, Sun Z, Dunphy D, Brinker CJ (2008) Free-standing, patternable nanoparticle/polymer monolayer arrays formed by evaporation induced self-assembly at a fluid interface. J Am Chem Soc 130:3284–3285. doi:10.1021/ja710994m

    Article  CAS  Google Scholar 

  • Qi D, Kwong K, Rademacher K, Wolf MO, Young JF (2003) Optical emission of conjugated polymers adsorbed to nanoporous alumina. Nano Lett 3:1265–1268. doi:10.1021/nl034070q

    Article  CAS  Google Scholar 

  • Rabin Y, Marko JF (1991) Microphase separation in charged diblock copolymers: the weak segregation limit. Macromolecules 24:2134–2136. doi:10.1021/ma00008a074

    Article  CAS  Google Scholar 

  • Rifai S, Breen CA, Solis DJ, Swager TM (2006) Facile in situ silver nanoparticle formation in insulating porous polymer matrices. Chem Mater 18:21–25. doi:10.1021/cm0511419

    Article  CAS  Google Scholar 

  • Sacarescu G, Sacarescu L, Ardeleanu R, Kurcok P, Jedlinski Z (2001) Si–H functional polysilanes via a homogeneous reductive coupling reaction. Macromol Rapid Commun 22:405–408. doi:10.1002/1521-3927(20010301)22

    Article  CAS  Google Scholar 

  • Sakurai H, Kira M, Uchida T (1973) Intermolecular donation of a sigma-electron from group IVb catenates to tetracyanoethylene. Evidence of electron paramagnetic resonance and charge-transfer spectra. J Am Chem Soc 95:6826–6827. doi:10.1021/ja00801a050

    Article  CAS  Google Scholar 

  • Sanji T, Ogawa Y, Nakatsuka Y, Tanaka M, Sakurai H (2003) Metal nanoparticles derived from polysilane shell cross-linked micelle templates. Chem Lett 980–981. doi:10.1246/cl.2003.980

  • Schmid G, Bäumle M, Geerkens M, Heim I, Osemann C, Sawitowski T (1999) Current and future applications of nanoclusters. Chem Soc Rev 28:179–185. doi:10.1039/a801153b

    Article  CAS  Google Scholar 

  • Schmid G, Simon U (2005) Gold nanoparticles: assembly and electrical properties in 1–3 dimensions. Chem Commun 697–710. doi:10.1039/b411696h

  • Shein JB, Lai LMH, Eggers PK, Paddon-Row MN, Gooding JJ (2009) Formation of efficient electron transfer pathways by adsorbing gold nanoparticles to self-assembled monolayer modified electrodes. Langmuir 25:11121–11128. doi:10.1021/la901421m

    Article  CAS  Google Scholar 

  • Sidorov SN, Bronstein LM, Valetsky PM, Hartmann J, Colfen H, Schnablegger H, Antonietti M (1999) Stabilization of metal nanoparticles in aqueous medium by polyethyleneoxide–polyethyleneimine block copolymers. J Colloid Interface Sci 212:197–211. doi:10.1006/jcis.1998.6035

    Article  CAS  Google Scholar 

  • Sinha A, Das SK, Kumar BR, Chakroborty S, Rao V, Ramachandrarao P (2000) Polymer-mediated synthesis of fine-sized cobalt particles. J Mater Synth Process 8:109–113. doi:10.1023/A:1026626220902

    Article  CAS  Google Scholar 

  • Skryshevski YuA (2002) The influence of the preparation conditions on the energy disorder in poly(methylphenyl)silane films. Phys Solid State 44:1785–1790. doi:10.1134/1.1507266

    Article  CAS  Google Scholar 

  • Sommer M, Lindner SM, Thelakkat M (2007) Microphase-separated donor-acceptor diblock copolymers: influence of homo energy levels and morphology on polymer solar cells. Adv Funct Mater 17:1493–1500. doi:10.1002/adfm.200600634

    Article  CAS  Google Scholar 

  • Sun Y-P, Michl J (1992) Models for polysilane high polymers. 2. Photophysics of linear permethylhexasilane: a low-lying Franck-Condon forbidden excited singlet state. J Am Chem Soc 114:8186–8190. doi:10.1021/ja00047a031

    Article  CAS  Google Scholar 

  • Sun Y-P, Hamada Y, Huang L-M, Maxka J, Hsiao J-S, West R, Michl J (1992) Models of polysilane high polymers. 1. Singlet photophysics of linear permethylhexadecasilane (Si16Me34). J Am Chem Soc 114:6301–6310. doi:10.1021/ja00042a005

    Article  CAS  Google Scholar 

  • Tamai T, Watanabe M, Hatanaka Y, Tsujiwaki H (2008) Formation of metal nanoparticles on the surface of polymer particles incorporating polysilane by UV irradiation. Langmuir 24:14203–14208. doi:10.1021/la801809u

    Article  CAS  Google Scholar 

  • Tannenbaum R, Flenniken CL, Goldberg EP (1990) Magnetic metal-polymer composites: thermal and oxidative decomposition of Fe(CO)5 and CO2(CO)8 in a poly (vinylidene fluoride) matrix. J Polym Sci Polym Phys Ed 28:2421–2433. doi:10.1002/polb.1990.090281218

    Article  CAS  Google Scholar 

  • Tretiak S, Kilina S, Piryatinski A, Saxena A, Martin RL, Bishop AR (2007) Excitons and Peierls distortion in conjugated carbon nanotubes. Nano Lett 7:86–92. doi:10.1021/nl0622000

    Article  CAS  Google Scholar 

  • von Werne T, Patten TE (2001) ATRP from nanoparticles: a tool for the preparation of well-defined hybrid nanostructures and for understanding the chemistry of controlled/“living” radical polymerizations from surfaces. J Am Chem Soc 123:7497–7505. doi:10.1021/ja010235q

    Article  Google Scholar 

  • Wang Z, Chumanov G (2003) WO3 sol–gel modified Ag nanoparticle arrays for electrochemical modulation of surface plasmon resonance. Adv Mater 15:1285–1289. doi:10.1002/adma.200304989

    Article  CAS  Google Scholar 

  • Wang Y, West R, Chien Y-H (1993) Fullerene-doped polysilane photoconductor. J Am Chem Soc 115:3844–3845. doi:10.1021/ja00062a088

    Article  CAS  Google Scholar 

  • Wolff AR, Nozue I, Maxka J, West R (1988) 29Si nuclear magnetic resonance of dimethyl and phenylmethyl containing polysilanes. J Polym Sci A 26:701–712. doi:10.1002/pola.1988.080260303

    Article  CAS  Google Scholar 

  • Zhou Y, Itoh H, Uemura T, Naka K, Chujo Y (2001) Preparation of π-conjugated polymer-protected gold nanoparticles in stable colloidal form. Chem Commun 613–614. doi:10.1039/b100636n

Download references

Acknowledgments

The authors thank to Romanian Ministry of Education—Matnantech project No. 36/2005 for supporting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liviu Sacarescu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 187 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sacarescu, L., Simionescu, M., Sacarescu, G. et al. Photocatalytic synthesis of silver nanoparticles using polysilane initiator. J Nanopart Res 13, 997–1005 (2011). https://doi.org/10.1007/s11051-010-0120-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-0120-2

Keywords

Navigation