Journal of Nanoparticle Research

, Volume 13, Issue 3, pp 1237–1252 | Cite as

The magnetic and hyperthermia studies of bare and silica-coated La0.75Sr0.25MnO3 nanoparticles

  • O. Kaman
  • P. Veverka
  • Z. Jirák
  • M. Maryško
  • K. Knížek
  • M. Veverka
  • P. Kašpar
  • M. Burian
  • V. Šepelák
  • E. Pollert
Research Paper


The magnetic nanoparticles of La0.75Sr0.25MnO3 perovskite manganite with a controlled size were prepared via sol–gel procedure, followed by thermal treatment and subsequent mechanical processing of the resulting raw product. The prepared materials were structurally studied by the XRD and TEM methods and probed by DC magnetic measurements. The nanoparticles of the mean crystallite sizes 11–40 nm exhibit T C in the range of ≈310–347 K and the sample possessing 20-nm crystallites was identified as the most suitable for hyperthermia experiments. In order to obtain a colloidally stable suspension and prevent toxic effects, the selected magnetic cores were further encapsulated into silica shell using tetraethoxysilane. The detailed magnetic studies were focused on the comparison of the raw product, the bare nanoparticles after mechanical processing and the silica-coated nanoparticles, dealing also with effects of size distribution and magnetic interactions. The heating experiments were carried out in an AC field of frequencies 100 kHz–1 MHz and amplitude 3.0–8.9 kA m−1 on water dispersions of the samples, and the generated heat was deduced from their warming rate taking into account experimentally determined thermal losses into surroundings. The experiments demonstrate that the heating efficiency of the coated nanoparticles is generally higher than that of the bare magnetic cores. It is also shown that the aggregation of the bare nanoparticles increases heating efficiency at least in a certain concentration range.


Perovskite manganite Magnetic nanoparticles Hyperthermia Size distribution Synthesis Nanomedicine 



The study was performed under the support of the Academy of Sciences of the Czech Republic (project KAN200200651). One of the authors (V.Š.) thanks the DFG (SPP 1415) and the APVV (0728-07) for supporting his work. We would like to acknowledge our colleagues who helped with the experimental work during the fabrication and characterization of La1−x Sr x MnO3 nanoparticles, namely Eva Hadová, Dagmar Zemanová, Jaroslav Boháček, Zuzana Jaklinová and Petr Vorm.

Supplementary material

11051_2010_117_MOESM1_ESM.pdf (363 kb)
Supplementary material 1 (PDF 364 kb)


  1. Bitoh T, Ohba K, Takamatsu M, Shirane T, Hikazawa S (1995) Field-cooled and zero-field-cooled, magnetization of superparamagnetic fine particles in Cu97Co3 alloy—comparison with spin-glass Au96Fe4 alloy. J Phys Soc Jpn 64:1305–1310CrossRefGoogle Scholar
  2. Brezovich IA, Lilly MB, Meredith RF, Weppelmann B, Henderson RA, Brawner W, Salter MM (1990) Hyperthermia of pet animal tumors with self-regulating ferromagnetic thermoseeds. Int J Hyperther 6:117–130CrossRefGoogle Scholar
  3. Chaudhari GN, Jagtap SV, Gedam NN, Pawar MJ, Sangawar VS (2009) Sol-gel synthesized semiconducting LaCo0.8Fe0.2O3-based powder for thick film NH3 gas sensor. Talanta 78:1136–1140. doi: 10.1016/j.talanta.2009.01.030 CrossRefGoogle Scholar
  4. Chen S, Chiang C, Hsieh S (2010) Simulating physiological conditions to evaluate nanoparticles for magnetic fluid hyperthermia (MFH) therapy applications. J Magn Magn Mater 322:247–252. doi: 10.1016/j.jmmm.2009.09.006 CrossRefGoogle Scholar
  5. Dabrowski B, Klamut PW, Bukowski Z, Dybzinski R, Siewenie JE (1999) Effective oxygen content and properties of La0.74Ca0.26MnO3+δ as a function of synthesis conditions. J Solid State Chem 144:461–466CrossRefGoogle Scholar
  6. Daengsakul S, Mongkolkachit C, Thomas C, Siri S, Thomas I, Amornkitbamrung V, Maensiri S (2009) A simple thermal decomposition synthesis, magnetic properties, and cytotoxicity of La0.7Sr0.3MnO3 nanoparticles. Appl Phys A 96:691–699. doi: 10.1007/s00339-009-5151-0 CrossRefGoogle Scholar
  7. Das N, Mondal P, Bhattacharya D (2006) Particle-size dependence of orbital order-disorder transition in LaMnO3. Phys Rev B. doi: 10.1103/PhysRevB.74.014410
  8. Dhage SR, Gaikwad SP, Muthukumar P, Ravi V (2004) Synthesis of Ce0.75Zr0.25O2 by citrate gel method. Mater Lett 58:2704–2706. doi: 10.1016/j.matlet.2004.03.017 CrossRefGoogle Scholar
  9. Duguet E, Hardel L, Vasseur S (2009) Cell targeting and magnetically induced hyperthermia. In: Volz S (ed) Thermal nanosystems and nanomaterials. Topics in Applied Physics, vol 118. Springer-Verlag, Berlin, pp 343–365CrossRefGoogle Scholar
  10. El-Hilo M, O’Grady K, Chantrell RW (1992) The ordering temperature in fine particle-particle systems. J Magn Magn Mater 117:21–28CrossRefGoogle Scholar
  11. Hergt R, Dutz S, Müller R, Zeisberger M (2006) Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J Phys Condens Matter 18:S2919–S2934. doi: 10.1088/0953-8984/18/38/S26 CrossRefGoogle Scholar
  12. Hergt R, Dutz S, Röder M (2008) Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia. J Phys Condens Matter. doi: 10.1088/0953-84/20/38/385214
  13. Jirák Z, Hadová E, Kaman O, Knížek K, Maryško M, Pollert E, Dlouhá M, Vratislav S (2010) Ferromagnetism versus charge ordering in the Pr0.5Ca0.5MnO3 and La0.5Ca0.5MnO3 nanocrystals. Phys Rev B. doi:  10.1103/PhysRevB.81.024403
  14. Johannsen M, Gneveckow U, Eckelt L, Feussner A, Waldöfner N, Scholz R, Deger S, Wust P, Loening SA, Jordan A (2005) Clinical hyperthermia of prostate cancer using magnetic nanoparticles: Presentation of a new interstitial technique. Int J Hyperther 21:637–647. doi: 10.1080/02656730500158360 CrossRefGoogle Scholar
  15. Kakihana M (1996) ‘‘Sol-Gel’’ preparation of high temperature superconducting oxides. J Sol Gel Sci Technol 6:7–55CrossRefGoogle Scholar
  16. Kaman O, Pollert E, Veverka P, Veverka M, Hadová E, Knížek K, Maryško M, Kašpar P, Klementová M, Grünwaldová V, Vasseur S, Epherre R, Mornet S, Goglio G, Duguet E (2009) Silica encapsulated manganese perovskite nanoparticles for magnetically induced hyperthermia without the risk of overheating. Nanotechnology. doi: 10.1088/0957-4484/20/27/275610
  17. Kodama RH, Berkowitz AE, McNiff EJ, Foner S (1997) Surface spin disorder in ferrite nanoparticles. J Appl Phys 81:5552–5557CrossRefGoogle Scholar
  18. Kuznetsov AA, Shlyakhtin OA, Brusentsov NA, Kuznetsov OA (2002) “Smart” mediators for self-controlled inductive heating. Eur Cells Mater 3(Suppl 2):75–77Google Scholar
  19. Lévy M, Wilhelm C, Siaugue JM, Horner O, Bacri JC, Gazeau F (2008) Magnetically induced hyperthermia: size-dependent heating power of γ-Fe2O3 nanoparticles. J Phys Condens Matter. doi: 10.1088/0953-8984/20/20/204133
  20. Lu JJ, Deng HY, Huang HL (2000) Thermal relaxation of interacting fine magnetic particles—field-cooled and zero-field-cooled magnetization variation. J Magn Magn Mater 209:37–41CrossRefGoogle Scholar
  21. Martinez B, Obradors X, Balcells L, Riouanet A, Monty C (1998) Low temperature surface spin-glass transition in γ-Fe2O3 nanoparticles. Phys Rev Lett 80:181–184CrossRefGoogle Scholar
  22. Michalopoulou A, Syskakis E, Papastaikoudis C (2003) Calorimetric and electrical transport properties of stoichiometric La1−xSrxMnO3 compounds. J Phys Condens Matter 15:7763–7776CrossRefGoogle Scholar
  23. Miyoshi S, Hong JO, Yashiro K, Kaimai A, Nigara Y, Kawamura K, Kawada T, Mizusaki J (2002) Lattice creation and annihilation of LaMnO3+δ caused by nonstoichiometry change. Solid State Ion 154–155:257–263CrossRefGoogle Scholar
  24. Mizusaki J, Tagawa H, Yonemura Y, Minamiue H, Nambu H (1994) Effect of lanthanum deficiency on the nonstoichiometry, electronic properties and structure of La1−xMnO3+d. In: Ramanarayanan TA, Worrell WL, Tuller HL (eds) Proceedings of the 2nd international symposium on ionic and mixed conducting ceramics, vol PV 94-12. The Electrochemical Society Proceeding Series, Pennington, NJ, p 402Google Scholar
  25. Montemayor SM, García-Cerda LA, Torres-Lubián JR (2005) Preparation and characterization of cobalt ferrite by the polymerized complex method. Mater Lett 59:1056–1060. doi: 10.1016/j.matlet.2004.12.004 CrossRefGoogle Scholar
  26. Moreira ML, Soares JM, de Azevedo WM, Rodrigues AR, Machado FLA, de Araújo JH (2006) Structural and magnetic properties of nanoparticles of La2/3Sr1/3MnO3. Phys B 384:51–53. doi: 10.1016/j.physb.2006.05.044 CrossRefGoogle Scholar
  27. Natividad E, Castro ENM, Mediano A (2008) Accurate measurement of the specific absorption rate using a suitable adiabatic magnetothermal setup. App Phys Lett. doi: 10.1063/1.2891084
  28. Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D 36:R167–R181CrossRefGoogle Scholar
  29. Pollert E, Knížek K, Maryško M, Kašpar P, Vasseur S, Duguet E (2007) New Tc-tuned magnetic nanoparticles for self-controlled hyperthermia. J Magn Magn Mater 316:122–125. doi: 10.1016/j.jmmm.2007.02.031 CrossRefGoogle Scholar
  30. Pollert E, Veverka P, Veverka M, Kaman O, Závěta K, Vasseur S, Epherre R, Goglio G, Duguet E (2009) Search of new core materials for magnetic fluid hyperthermia: Preliminary chemical and physical issues. Prog Solid State Chem 37:1–14. doi: 10.1016/j.progsolidstchem.2009.02.001 CrossRefGoogle Scholar
  31. Rechenberg HR, Sousa EC, Depeyrot J, Sousa MH, Aquino R, Tourinho FA, Perzynski R (2008) Surface spin disorder in nickel ferrite nanomagnets studied by in-field Mossbauer spectroscopy. Hyperfine Interact 184:9–14. doi: 10.1007/s10751-008-9763-0 CrossRefGoogle Scholar
  32. Rybicki D, Sikora M, Kapusta CZ, Riedi PC, Jirák Z, Knížek K, Maryško M, Pollert E, Veverka P (2006) A 55Mn NMR study of the La0.75Sr0.25MnO3 nanoparticles. Phys Status Solidi C 3:155–158CrossRefGoogle Scholar
  33. Šepelák V, Bergmann I, Feldhoff A, Heitjans P, Krumeich F, Menzel D, Litterst FJ, Campbell SJ, Becker KD (2007) Nanocrystalline nickel ferrite, NiFe2O4: mechanosynthesis, nonequilibrium cation distribution, canted spin arrangement, and magnetic behavior. J Phys Chem C 111:5026–5033. doi: 10.1021/jp067620s CrossRefGoogle Scholar
  34. Sharma SK, Kumar R, Kumar S, Kumar VVS, Knobel M, Reddy VR, Banerjee A, Singh M (2007) Magnetic study of Mg0.95Mn0.05Fe2O4 ferrite nanoparticles. Solid State Commun 141:203–208. doi: 10.1016/j.ssc.2006.10.014 CrossRefGoogle Scholar
  35. Shlyakhtin OA, Leontiev VG, Oh YJ, Kuznetsov AA (2007) New manganite-based mediators for self-controlled magnetic heating. Smart Mater Struct 16:35–39. doi: 10.1088/0964-1726/16/5/N02 CrossRefGoogle Scholar
  36. Stoner EC, Wohlfarth EP (1948) A mechanism of magnetic hysteresis in heterogeneous alloys. Phil Trans R Soc A 240:599–642CrossRefGoogle Scholar
  37. Thiesen B, Jordan A (2008) Clinical applications of magnetic nanoparticles for hyperthermia. Int J Hyperther 24:467–474. doi: 10.1080/02656730802104757 CrossRefGoogle Scholar
  38. Tofield BC, Scott WR (1974) Oxidative nonstoichiometry in perovskites, an experimental survey - defect structure of an oxidized lanthanum manganite by powder neutron-diffraction. J Solid State Chem 10:183–194CrossRefGoogle Scholar
  39. Tomitaka A, Kobayashi H, Yamada T, Jeun M, Bae S, Takemura Y (2010) Magnetization and self-heating temperature of NiFe2O4 nanoparticles measured by applying ac magnetic field. J Phys Conf Ser. doi:  10.1088/1742-6596/200/12/122010
  40. Trukhanov SV, Trukhanov AV, Stepin SG, Szymczak H, Botez CE (2008) Effect of the size factor on the magnetic properties of manganite La0.50Ba0.50MnO3. Phys Solid State 50:886–893. doi: 10.1134/S1063783408050144 CrossRefGoogle Scholar
  41. Van Roosmalen JAM, Cordfunke EHP, Helmholdt RB, Zandbergen HW (1994) The defect chemistry of LaMnO3±δ: 2. Structural aspects of LaMnO3+δ. J Solid State Chem 110:100–105CrossRefGoogle Scholar
  42. Vaqueiro P, Crosnier-Lopez MP, López-Quintela MA (1996) Synthesis and characterization of yttrium iron garnet nanoparticles. J Solid State Chem 126:161–168CrossRefGoogle Scholar
  43. Vasseur S, Duguet E, Portier J, Goglio G, Mornet S, Hadová E, Knížek K, Maryško M, Veverka P, Pollert E (2006) Lanthanum manganese perovskite nanoparticles as possible in vivo mediators for magnetic hyperthermia. J Magn Magn Mater 302:315–320. doi: 10.1016/j.jmmm.2005.09.026 CrossRefGoogle Scholar
  44. Zábranský M, Růžička V, Majer V, Domalski ES (1996) Heat Capacities of liquids, critical review and recommended values. J Phys Chem Ref. Data Monograph no 6. American Chemical Society, WashingtonGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • O. Kaman
    • 1
  • P. Veverka
    • 1
  • Z. Jirák
    • 1
  • M. Maryško
    • 1
  • K. Knížek
    • 1
  • M. Veverka
    • 1
  • P. Kašpar
    • 2
  • M. Burian
    • 3
  • V. Šepelák
    • 4
  • E. Pollert
    • 1
  1. 1.Institute of PhysicsAS CRPrague 6Czech Republic
  2. 2.Faculty of Electrical EngineeringCzech Technical UniversityPrague 6Czech Republic
  3. 3.Institute of Clinical and Experimental MedicinePrague 1Czech Republic
  4. 4.Institute of NanotechnologyKarlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany

Personalised recommendations