Skip to main content
Log in

Size-controlled Pd nanocluster grown by plasma gas-condensation method

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Syntheses of palladium (Pd) nanoclusters by sputtering gas-condensation technique are reported in this work. The Pd nanocluster size distribution and number of nanoclusters are found to depend on several factors which include the inert gas flow rate (f), sputtering discharge power, and growth region length. The discharge power and the length of the growth region are optimized to produce high nanocluster yield. It is found that low f produces small number of large nanoclusters which can be attributed to the formation of nanoclusters via the two-body collision mechanism. For high f, nanocluster size decreases and the number of nanocluster increases with f. This phenomenon can be assigned to nanocluster formation through three-body collision mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ayesh AI, Lassesson A, Brown SA, Dunbar AD, Kaufmann M, Partridge J, Reichel R, van Lith J (2007) Experimental and simulational study of the operation conditions for a high transmission mass filter. Rev Sci Instrum 78:053906

    Article  CAS  Google Scholar 

  • Ayesh AI, Qamhieh N, Ghamlouche H, Thaker S, EL-Shaer M (2010) Fabrication of size-selected Pd nanoclusters using a magnetron plasma sputtering source. J Appl Phys 107:034317

    Article  Google Scholar 

  • Banerjee AN, Krishna R, Das B (2008) Size controlled deposition of Cu and Si nano-clusters by an ultra-high vacuum sputtering gas aggregation technique. Appl Phys A 90:299–303

    Article  CAS  Google Scholar 

  • Busani R, Folkers M, Cheshnovsky O (1998) Direct observation of band-gap closure in mercury clusters. Phys Rev Lett 81:3836–3839

    Article  CAS  Google Scholar 

  • Dawson PH (1976) Quadrupole mass spectrometry and its applications. Elsevier Press, Amsterdam

    Google Scholar 

  • de Heer WA (1993) The physics of simple metal clusters: experimental aspects and simple models. Rev Mod Phys 65:611–676

    Article  Google Scholar 

  • Haberland H (1992) US Patent no. 5110435

  • Haberland H (1995) Nanoclusters of atoms and molecules. Springer, Berlin

    Google Scholar 

  • Haberland H, Karrais M, Mall M, Thurner Y (1992) Thin-films from energetic cluster impact—a feasibility study. J Vac Sci Technol A 10:3266–3271

    Article  CAS  Google Scholar 

  • Hanneken JW, Baker DB, Conradic MS, Eastmand JA (2002) NMR study of the nanocrystalline palladium-hydrogen system. J Alloy Compd 330:714–717

    Article  Google Scholar 

  • Hicken R (2003) Ultrafast nanomagnets: seeing data storage in a new light. Phil Trans R Soc Lond A 361:2827

    Article  CAS  Google Scholar 

  • Hihara T, Sumiyama K (1998) Formation and size control of a Ni cluster by plasma gas condensation. J App Phys 84:5270–5276

    Article  CAS  Google Scholar 

  • Kappes M, Leutwyler S (1988) Molecular beams of clusters. In: Scoles G (ed) Atomic and molecular beam methods, vol 1. Oxford University Press, New York

    Google Scholar 

  • Knauer W (1987) Formation of large metal-clusters by surface nucleation. J Appl Phys 62:841–851

    Article  CAS  Google Scholar 

  • Pfeiffer Vacuum GmbH, Pfeiffer Quadrupole mass filter user manual, Germany

  • Pratontep S, Carroll SJ, Xirouchaki C, Streun M, Palmer R (2005) Size-selected cluster beam source based on radio frequency magnetron plasma sputtering and gas condensation. Rev Sci Instrum 76:045103

    Article  Google Scholar 

  • Reichel R, Partridge JG, Dunbar ADF, Brown SA, Caughley O, Ayesh A (2006) Construction and application of a UHV compatible cluster deposition system. J Nanopart Res 8:405–416

    Article  Google Scholar 

  • van Lith J, Lassesson A, Brown SA, Schulze M, Partridge JG, Ayesh A (2007) A hydrogen sensor based on tunneling between palladium clusters. Appl Phys Lett 91:181910

    Article  Google Scholar 

  • Watari N, Ohnishi S, Ishii Y (2000) Hydrogen storage in Pd clusters. J Phys Condens Matter 12:6799–6823

    Article  CAS  Google Scholar 

  • Yamamuro S, Sumiyama K, Sakurai W, Suzuki K (1998) Cr cluster deposition by plasma-gas-condensation method. Supramol Sci 5:239–245

    Article  CAS  Google Scholar 

  • Yatsuya S, Kamakura T, Yamauchi K, Mihama K (1986) A new technique for the formation of ultrafine particles by sputtering. Jpn J Appl Phys Part 2 25:L42–L44

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Ayesh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayesh, A.I., Thaker, S., Qamhieh, N. et al. Size-controlled Pd nanocluster grown by plasma gas-condensation method. J Nanopart Res 13, 1125–1131 (2011). https://doi.org/10.1007/s11051-010-0104-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-0104-2

Keywords

Navigation